On the Set of the Numbers of Conjugates of Noncyclic Proper Subgroups of Finite Groups
Let G be a finite group and 𝒩𝒞(G) the set of the numbers of conjugates of noncyclic proper subgroups of G. We prove that (1) if |𝒩𝒞(G)|≤2, then G is solvable, and (2) G is a nonsolvable group with |𝒩𝒞(G)|=3 if and only if G≅PSL(2,5) or PSL(2,13) or SL(2,5) or SL(2,13).
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2013-01-01
|
Series: | The Scientific World Journal |
Online Access: | http://dx.doi.org/10.1155/2013/430870 |