Parameter Estimation for Spatio-Temporal Maximum Entropy Distributions: Application to Neural Spike Trains
We propose a numerical method to learn maximum entropy (MaxEnt) distributions with spatio-temporal constraints from experimental spike trains. This is an extension of two papers, [10] and [4], which proposed the estimation of parameters where only spatial constraints were taken into account. The ext...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2014-04-01
|
Series: | Entropy |
Subjects: | |
Online Access: | http://www.mdpi.com/1099-4300/16/4/2244 |
id |
doaj-72e252c986f546a79cc07ac36c96d471 |
---|---|
record_format |
Article |
spelling |
doaj-72e252c986f546a79cc07ac36c96d4712020-11-24T20:52:27ZengMDPI AGEntropy1099-43002014-04-011642244227710.3390/e16042244e16042244Parameter Estimation for Spatio-Temporal Maximum Entropy Distributions: Application to Neural Spike TrainsHassan Nasser0Bruno Cessac1INRIA, 2004 route de lucioles, 06560, Sophia-Antipolis, FranceINRIA, 2004 route de lucioles, 06560, Sophia-Antipolis, FranceWe propose a numerical method to learn maximum entropy (MaxEnt) distributions with spatio-temporal constraints from experimental spike trains. This is an extension of two papers, [10] and [4], which proposed the estimation of parameters where only spatial constraints were taken into account. The extension we propose allows one to properly handle memory effects in spike statistics, for large-sized neural networks.http://www.mdpi.com/1099-4300/16/4/2244neural codingGibbs distributionmaximum entropyconvex dualityspatio-temporal constraintslarge-scale analysisspike trainMEA recordings |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Hassan Nasser Bruno Cessac |
spellingShingle |
Hassan Nasser Bruno Cessac Parameter Estimation for Spatio-Temporal Maximum Entropy Distributions: Application to Neural Spike Trains Entropy neural coding Gibbs distribution maximum entropy convex duality spatio-temporal constraints large-scale analysis spike train MEA recordings |
author_facet |
Hassan Nasser Bruno Cessac |
author_sort |
Hassan Nasser |
title |
Parameter Estimation for Spatio-Temporal Maximum Entropy Distributions: Application to Neural Spike Trains |
title_short |
Parameter Estimation for Spatio-Temporal Maximum Entropy Distributions: Application to Neural Spike Trains |
title_full |
Parameter Estimation for Spatio-Temporal Maximum Entropy Distributions: Application to Neural Spike Trains |
title_fullStr |
Parameter Estimation for Spatio-Temporal Maximum Entropy Distributions: Application to Neural Spike Trains |
title_full_unstemmed |
Parameter Estimation for Spatio-Temporal Maximum Entropy Distributions: Application to Neural Spike Trains |
title_sort |
parameter estimation for spatio-temporal maximum entropy distributions: application to neural spike trains |
publisher |
MDPI AG |
series |
Entropy |
issn |
1099-4300 |
publishDate |
2014-04-01 |
description |
We propose a numerical method to learn maximum entropy (MaxEnt) distributions with spatio-temporal constraints from experimental spike trains. This is an extension of two papers, [10] and [4], which proposed the estimation of parameters where only spatial constraints were taken into account. The extension we propose allows one to properly handle memory effects in spike statistics, for large-sized neural networks. |
topic |
neural coding Gibbs distribution maximum entropy convex duality spatio-temporal constraints large-scale analysis spike train MEA recordings |
url |
http://www.mdpi.com/1099-4300/16/4/2244 |
work_keys_str_mv |
AT hassannasser parameterestimationforspatiotemporalmaximumentropydistributionsapplicationtoneuralspiketrains AT brunocessac parameterestimationforspatiotemporalmaximumentropydistributionsapplicationtoneuralspiketrains |
_version_ |
1716799636721631232 |