Parameter Estimation for Spatio-Temporal Maximum Entropy Distributions: Application to Neural Spike Trains

We propose a numerical method to learn maximum entropy (MaxEnt) distributions with spatio-temporal constraints from experimental spike trains. This is an extension of two papers, [10] and [4], which proposed the estimation of parameters where only spatial constraints were taken into account. The ext...

Full description

Bibliographic Details
Main Authors: Hassan Nasser, Bruno Cessac
Format: Article
Language:English
Published: MDPI AG 2014-04-01
Series:Entropy
Subjects:
Online Access:http://www.mdpi.com/1099-4300/16/4/2244
id doaj-72e252c986f546a79cc07ac36c96d471
record_format Article
spelling doaj-72e252c986f546a79cc07ac36c96d4712020-11-24T20:52:27ZengMDPI AGEntropy1099-43002014-04-011642244227710.3390/e16042244e16042244Parameter Estimation for Spatio-Temporal Maximum Entropy Distributions: Application to Neural Spike TrainsHassan Nasser0Bruno Cessac1INRIA, 2004 route de lucioles, 06560, Sophia-Antipolis, FranceINRIA, 2004 route de lucioles, 06560, Sophia-Antipolis, FranceWe propose a numerical method to learn maximum entropy (MaxEnt) distributions with spatio-temporal constraints from experimental spike trains. This is an extension of two papers, [10] and [4], which proposed the estimation of parameters where only spatial constraints were taken into account. The extension we propose allows one to properly handle memory effects in spike statistics, for large-sized neural networks.http://www.mdpi.com/1099-4300/16/4/2244neural codingGibbs distributionmaximum entropyconvex dualityspatio-temporal constraintslarge-scale analysisspike trainMEA recordings
collection DOAJ
language English
format Article
sources DOAJ
author Hassan Nasser
Bruno Cessac
spellingShingle Hassan Nasser
Bruno Cessac
Parameter Estimation for Spatio-Temporal Maximum Entropy Distributions: Application to Neural Spike Trains
Entropy
neural coding
Gibbs distribution
maximum entropy
convex duality
spatio-temporal constraints
large-scale analysis
spike train
MEA recordings
author_facet Hassan Nasser
Bruno Cessac
author_sort Hassan Nasser
title Parameter Estimation for Spatio-Temporal Maximum Entropy Distributions: Application to Neural Spike Trains
title_short Parameter Estimation for Spatio-Temporal Maximum Entropy Distributions: Application to Neural Spike Trains
title_full Parameter Estimation for Spatio-Temporal Maximum Entropy Distributions: Application to Neural Spike Trains
title_fullStr Parameter Estimation for Spatio-Temporal Maximum Entropy Distributions: Application to Neural Spike Trains
title_full_unstemmed Parameter Estimation for Spatio-Temporal Maximum Entropy Distributions: Application to Neural Spike Trains
title_sort parameter estimation for spatio-temporal maximum entropy distributions: application to neural spike trains
publisher MDPI AG
series Entropy
issn 1099-4300
publishDate 2014-04-01
description We propose a numerical method to learn maximum entropy (MaxEnt) distributions with spatio-temporal constraints from experimental spike trains. This is an extension of two papers, [10] and [4], which proposed the estimation of parameters where only spatial constraints were taken into account. The extension we propose allows one to properly handle memory effects in spike statistics, for large-sized neural networks.
topic neural coding
Gibbs distribution
maximum entropy
convex duality
spatio-temporal constraints
large-scale analysis
spike train
MEA recordings
url http://www.mdpi.com/1099-4300/16/4/2244
work_keys_str_mv AT hassannasser parameterestimationforspatiotemporalmaximumentropydistributionsapplicationtoneuralspiketrains
AT brunocessac parameterestimationforspatiotemporalmaximumentropydistributionsapplicationtoneuralspiketrains
_version_ 1716799636721631232