A Method and On-Line Tool for Maximum Likelihood Calibration of Immunoblots and Other Measurements That Are Quantified in Batches.

Experimental measurements require calibration to transform measured signals into physically meaningful values. The conventional approach has two steps: the experimenter deduces a conversion function using measurements on standards and then calibrates (or normalizes) measurements on unknown samples w...

Full description

Bibliographic Details
Main Authors: Steven S Andrews, Suzannah Rutherford
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2016-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC4764494?pdf=render
Description
Summary:Experimental measurements require calibration to transform measured signals into physically meaningful values. The conventional approach has two steps: the experimenter deduces a conversion function using measurements on standards and then calibrates (or normalizes) measurements on unknown samples with this function. The deduction of the conversion function from only the standard measurements causes the results to be quite sensitive to experimental noise. It also implies that any data collected without reliable standards must be discarded. Here we show that a "1-step calibration method" reduces these problems for the common situation in which samples are measured in batches, where a batch could be an immunoblot (Western blot), an enzyme-linked immunosorbent assay (ELISA), a sequence of spectra, or a microarray, provided that some sample measurements are replicated across multiple batches. The 1-step method computes all calibration results iteratively from all measurements. It returns the most probable values for the sample compositions under the assumptions of a statistical model, making them the maximum likelihood predictors. It is less sensitive to measurement error on standards and enables use of some batches that do not include standards. In direct comparison of both real and simulated immunoblot data, the 1-step method consistently exhibited smaller errors than the conventional "2-step" method. These results suggest that the 1-step method is likely to be most useful for cases where experimenters want to analyze existing data that are missing some standard measurements and where experimenters want to extract the best results possible from their data. Open source software for both methods is available for download or on-line use.
ISSN:1932-6203