Summary: | <p>Abstract</p> <p>Background</p> <p>Molecular genetic approaches have much to offer population biology. Despite recent advances, convenient techniques to develop and screen highly-resolving markers can be limiting for some applications and taxa. We describe an improved PCR-based, cloning-free, nuclear marker development procedure, in which single-stranded conformation polymorphism (SSCP) plays a central role. Sequence-variable alleles at putative nuclear loci are simultaneously identified and isolated from diploid tissues. Based on a multiple allele alignment, locus-specific primers are designed in conserved regions, minimizing 'null' alleles. Using two undescribed endemic Australian Collembola as exemplars, we outline a comprehensive approach to generating and validating suites of codominant, sequence-yielding nuclear loci for previously unstudied invertebrates.</p> <p>Results</p> <p>Six markers per species were developed without any baseline genetic information. After evaluating the characteristics of each new locus via SSCP pre-screening, population samples were genotyped on the basis of either DNA sequence, restriction site, or insertion/deletion variation, depending on which assay was deemed most appropriate. Polymorphism was generally high (mean of nine alleles per locus), and the markers were capable of resolving population structuring over very fine spatial scales (<100 km). SSCP coupled with targeted DNA sequencing was used to obtain genotypic, genic and genealogical information from six loci (three per species). Phylogeographic analysis identified introns as being most informative.</p> <p>Conclusion</p> <p>The comprehensive approach presented here feasibly overcomes technical hurdles of (i) developing suitably polymorphic nuclear loci for non-model organisms, (ii) physically isolating nuclear allele haplotypes from diploid tissues without cloning, and (iii) genotyping population samples on the basis of nuclear DNA sequence variation.</p>
|