Classifying Informatory Tweets during Disaster Using Deep Learning

Micro blogging platforms like Twitter generate a wealth of information during a disaster. Data can be in the form of sound, image, text, video etc. by way of tweets. Tweets produced during a disaster are not always educational. Information tweets can provide useful information about affected people,...

Full description

Bibliographic Details
Main Authors: Bhere Pradip, Upadhyay Anand, Chaudhari Ketan, Ghorpade Tushar
Format: Article
Language:English
Published: EDP Sciences 2020-01-01
Series:ITM Web of Conferences
Online Access:https://www.itm-conferences.org/articles/itmconf/pdf/2020/02/itmconf_icacc2020_03025.pdf
Description
Summary:Micro blogging platforms like Twitter generate a wealth of information during a disaster. Data can be in the form of sound, image, text, video etc. by way of tweets. Tweets produced during a disaster are not always educational. Information tweets can provide useful information about affected people, infrastructure damage, civilized organizations etc. Studies show that when it comes to sharing emergency information during a natural disaster, time is everything. Research on Twitter use during hurricanes, floods and floods provide potentially life-saving data on how information is disseminated in emergencies. The proposed system outlines how to distinguish sensitive and non-useful tweets during a disaster. The proposed method is based on the use of Word2Vec and the Convolutional Neural Network (CNN). Word2vec provides a feature vector and CNN is used to classify tweets.
ISSN:2271-2097