Heat to H<sub>2</sub>: Using Waste Heat for Hydrogen Production through Reverse Electrodialysis

This work presents an integrated hydrogen production system using reverse electrodialysis (RED) and waste heat, termed Heat to H<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics&...

Full description

Bibliographic Details
Main Authors: Kjersti Wergeland Krakhella, Robert Bock, Odne Stokke Burheim, Frode Seland, Kristian Etienne Einarsrud
Format: Article
Language:English
Published: MDPI AG 2019-09-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/12/18/3428
id doaj-72311289fbc841578b2e1b9696b7eacb
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Kjersti Wergeland Krakhella
Robert Bock
Odne Stokke Burheim
Frode Seland
Kristian Etienne Einarsrud
spellingShingle Kjersti Wergeland Krakhella
Robert Bock
Odne Stokke Burheim
Frode Seland
Kristian Etienne Einarsrud
Heat to H<sub>2</sub>: Using Waste Heat for Hydrogen Production through Reverse Electrodialysis
Energies
hydrogen production
reverse electrodialysis
waste heat
author_facet Kjersti Wergeland Krakhella
Robert Bock
Odne Stokke Burheim
Frode Seland
Kristian Etienne Einarsrud
author_sort Kjersti Wergeland Krakhella
title Heat to H<sub>2</sub>: Using Waste Heat for Hydrogen Production through Reverse Electrodialysis
title_short Heat to H<sub>2</sub>: Using Waste Heat for Hydrogen Production through Reverse Electrodialysis
title_full Heat to H<sub>2</sub>: Using Waste Heat for Hydrogen Production through Reverse Electrodialysis
title_fullStr Heat to H<sub>2</sub>: Using Waste Heat for Hydrogen Production through Reverse Electrodialysis
title_full_unstemmed Heat to H<sub>2</sub>: Using Waste Heat for Hydrogen Production through Reverse Electrodialysis
title_sort heat to h<sub>2</sub>: using waste heat for hydrogen production through reverse electrodialysis
publisher MDPI AG
series Energies
issn 1996-1073
publishDate 2019-09-01
description This work presents an integrated hydrogen production system using reverse electrodialysis (RED) and waste heat, termed Heat to H<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula>. The driving potential in RED is a concentration difference over alternating anion and cation exchange membranes, where the electrode potential can be used directly for water splitting at the RED electrodes. Low-grade waste heat is used to restore the concentration difference in RED. In this study we investigate two approaches: one water removal process by evaporation and one salt removal process. Salt is precipitated in the thermally driven salt removal, thus introducing the need for a substantial change in solubility with temperature, which KNO<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>3</mn> </msub> </semantics> </math> </inline-formula> fulfils. Experimental data of ion conductivity of K<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mo>+</mo> </msup> </semantics> </math> </inline-formula> and NO<inline-formula> <math display="inline"> <semantics> <msubsup> <mrow></mrow> <mn>3</mn> <mo>&#8722;</mo> </msubsup> </semantics> </math> </inline-formula> in ion-exchange membranes is obtained. The ion conductivity of KNO<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>3</mn> </msub> </semantics> </math> </inline-formula> in the membranes was compared to NaCl and found to be equal in cation exchange membranes, but significantly lower in anion exchange membranes. The membrane resistance constitutes 98% of the total ohmic resistance using concentrations relevant for the precipitation process, while for the evaporation process, the membrane resistance constitutes over 70% of the total ohmic resistance at 40 <inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mo>∘</mo> </msup> </semantics> </math> </inline-formula>C. The modelled hydrogen production per cross-section area from RED using concentrations relevant for the precipitation process is 0.014 &#177; 0.009 m<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>3</mn> </msup> </semantics> </math> </inline-formula> h<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mo>&#8722;</mo> <mn>1</mn> </mrow> </msup> </semantics> </math> </inline-formula> (1.1 &#177; 0.7 g h<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mo>&#8722;</mo> <mn>1</mn> </mrow> </msup> </semantics> </math> </inline-formula>) at 40 <inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mo>∘</mo> </msup> </semantics> </math> </inline-formula>C, while with concentrations relevant for evaporation, the hydrogen production per cross-section area was 0.034 &#177; 0.016 m<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>3</mn> </msup> </semantics> </math> </inline-formula> h<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mo>&#8722;</mo> <mn>1</mn> </mrow> </msup> </semantics> </math> </inline-formula> (2.6 &#177; 1.3 g h<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mo>&#8722;</mo> <mn>1</mn> </mrow> </msup> </semantics> </math> </inline-formula>). The modelled energy needed per cubic meter of hydrogen produced is 55 &#177; 22 kWh (700 &#177; 300 kWh kg<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mo>&#8722;</mo> <mn>1</mn> </mrow> </msup> </semantics> </math> </inline-formula>) for the evaporation process and 8.22 &#177; 0.05 kWh (104.8 &#177; 0.6 kWh kg<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mo>&#8722;</mo> <mn>1</mn> </mrow> </msup> </semantics> </math> </inline-formula>) for the precipitation process. Using RED together with the precipitation process has similar energy consumption per volume hydrogen produced compared to proton exchange membrane water electrolysis and alkaline water electrolysis, where the energy input to the Heat to H<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula>-process comes from low-grade waste heat.
topic hydrogen production
reverse electrodialysis
waste heat
url https://www.mdpi.com/1996-1073/12/18/3428
work_keys_str_mv AT kjerstiwergelandkrakhella heattohsub2subusingwasteheatforhydrogenproductionthroughreverseelectrodialysis
AT robertbock heattohsub2subusingwasteheatforhydrogenproductionthroughreverseelectrodialysis
AT odnestokkeburheim heattohsub2subusingwasteheatforhydrogenproductionthroughreverseelectrodialysis
AT frodeseland heattohsub2subusingwasteheatforhydrogenproductionthroughreverseelectrodialysis
AT kristianetienneeinarsrud heattohsub2subusingwasteheatforhydrogenproductionthroughreverseelectrodialysis
_version_ 1716798824343666688
spelling doaj-72311289fbc841578b2e1b9696b7eacb2020-11-24T20:52:50ZengMDPI AGEnergies1996-10732019-09-011218342810.3390/en12183428en12183428Heat to H<sub>2</sub>: Using Waste Heat for Hydrogen Production through Reverse ElectrodialysisKjersti Wergeland Krakhella0Robert Bock1Odne Stokke Burheim2Frode Seland3Kristian Etienne Einarsrud4Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, NorwayDepartment of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, NorwayDepartment of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, NorwayDepartment of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, NorwayDepartment of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, NorwayThis work presents an integrated hydrogen production system using reverse electrodialysis (RED) and waste heat, termed Heat to H<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula>. The driving potential in RED is a concentration difference over alternating anion and cation exchange membranes, where the electrode potential can be used directly for water splitting at the RED electrodes. Low-grade waste heat is used to restore the concentration difference in RED. In this study we investigate two approaches: one water removal process by evaporation and one salt removal process. Salt is precipitated in the thermally driven salt removal, thus introducing the need for a substantial change in solubility with temperature, which KNO<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>3</mn> </msub> </semantics> </math> </inline-formula> fulfils. Experimental data of ion conductivity of K<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mo>+</mo> </msup> </semantics> </math> </inline-formula> and NO<inline-formula> <math display="inline"> <semantics> <msubsup> <mrow></mrow> <mn>3</mn> <mo>&#8722;</mo> </msubsup> </semantics> </math> </inline-formula> in ion-exchange membranes is obtained. The ion conductivity of KNO<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>3</mn> </msub> </semantics> </math> </inline-formula> in the membranes was compared to NaCl and found to be equal in cation exchange membranes, but significantly lower in anion exchange membranes. The membrane resistance constitutes 98% of the total ohmic resistance using concentrations relevant for the precipitation process, while for the evaporation process, the membrane resistance constitutes over 70% of the total ohmic resistance at 40 <inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mo>∘</mo> </msup> </semantics> </math> </inline-formula>C. The modelled hydrogen production per cross-section area from RED using concentrations relevant for the precipitation process is 0.014 &#177; 0.009 m<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>3</mn> </msup> </semantics> </math> </inline-formula> h<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mo>&#8722;</mo> <mn>1</mn> </mrow> </msup> </semantics> </math> </inline-formula> (1.1 &#177; 0.7 g h<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mo>&#8722;</mo> <mn>1</mn> </mrow> </msup> </semantics> </math> </inline-formula>) at 40 <inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mo>∘</mo> </msup> </semantics> </math> </inline-formula>C, while with concentrations relevant for evaporation, the hydrogen production per cross-section area was 0.034 &#177; 0.016 m<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>3</mn> </msup> </semantics> </math> </inline-formula> h<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mo>&#8722;</mo> <mn>1</mn> </mrow> </msup> </semantics> </math> </inline-formula> (2.6 &#177; 1.3 g h<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mo>&#8722;</mo> <mn>1</mn> </mrow> </msup> </semantics> </math> </inline-formula>). The modelled energy needed per cubic meter of hydrogen produced is 55 &#177; 22 kWh (700 &#177; 300 kWh kg<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mo>&#8722;</mo> <mn>1</mn> </mrow> </msup> </semantics> </math> </inline-formula>) for the evaporation process and 8.22 &#177; 0.05 kWh (104.8 &#177; 0.6 kWh kg<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mo>&#8722;</mo> <mn>1</mn> </mrow> </msup> </semantics> </math> </inline-formula>) for the precipitation process. Using RED together with the precipitation process has similar energy consumption per volume hydrogen produced compared to proton exchange membrane water electrolysis and alkaline water electrolysis, where the energy input to the Heat to H<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula>-process comes from low-grade waste heat.https://www.mdpi.com/1996-1073/12/18/3428hydrogen productionreverse electrodialysiswaste heat