Heat to H<sub>2</sub>: Using Waste Heat for Hydrogen Production through Reverse Electrodialysis
This work presents an integrated hydrogen production system using reverse electrodialysis (RED) and waste heat, termed Heat to H<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics&...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-09-01
|
Series: | Energies |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1073/12/18/3428 |
id |
doaj-72311289fbc841578b2e1b9696b7eacb |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Kjersti Wergeland Krakhella Robert Bock Odne Stokke Burheim Frode Seland Kristian Etienne Einarsrud |
spellingShingle |
Kjersti Wergeland Krakhella Robert Bock Odne Stokke Burheim Frode Seland Kristian Etienne Einarsrud Heat to H<sub>2</sub>: Using Waste Heat for Hydrogen Production through Reverse Electrodialysis Energies hydrogen production reverse electrodialysis waste heat |
author_facet |
Kjersti Wergeland Krakhella Robert Bock Odne Stokke Burheim Frode Seland Kristian Etienne Einarsrud |
author_sort |
Kjersti Wergeland Krakhella |
title |
Heat to H<sub>2</sub>: Using Waste Heat for Hydrogen Production through Reverse Electrodialysis |
title_short |
Heat to H<sub>2</sub>: Using Waste Heat for Hydrogen Production through Reverse Electrodialysis |
title_full |
Heat to H<sub>2</sub>: Using Waste Heat for Hydrogen Production through Reverse Electrodialysis |
title_fullStr |
Heat to H<sub>2</sub>: Using Waste Heat for Hydrogen Production through Reverse Electrodialysis |
title_full_unstemmed |
Heat to H<sub>2</sub>: Using Waste Heat for Hydrogen Production through Reverse Electrodialysis |
title_sort |
heat to h<sub>2</sub>: using waste heat for hydrogen production through reverse electrodialysis |
publisher |
MDPI AG |
series |
Energies |
issn |
1996-1073 |
publishDate |
2019-09-01 |
description |
This work presents an integrated hydrogen production system using reverse electrodialysis (RED) and waste heat, termed Heat to H<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula>. The driving potential in RED is a concentration difference over alternating anion and cation exchange membranes, where the electrode potential can be used directly for water splitting at the RED electrodes. Low-grade waste heat is used to restore the concentration difference in RED. In this study we investigate two approaches: one water removal process by evaporation and one salt removal process. Salt is precipitated in the thermally driven salt removal, thus introducing the need for a substantial change in solubility with temperature, which KNO<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>3</mn> </msub> </semantics> </math> </inline-formula> fulfils. Experimental data of ion conductivity of K<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mo>+</mo> </msup> </semantics> </math> </inline-formula> and NO<inline-formula> <math display="inline"> <semantics> <msubsup> <mrow></mrow> <mn>3</mn> <mo>−</mo> </msubsup> </semantics> </math> </inline-formula> in ion-exchange membranes is obtained. The ion conductivity of KNO<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>3</mn> </msub> </semantics> </math> </inline-formula> in the membranes was compared to NaCl and found to be equal in cation exchange membranes, but significantly lower in anion exchange membranes. The membrane resistance constitutes 98% of the total ohmic resistance using concentrations relevant for the precipitation process, while for the evaporation process, the membrane resistance constitutes over 70% of the total ohmic resistance at 40 <inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mo>∘</mo> </msup> </semantics> </math> </inline-formula>C. The modelled hydrogen production per cross-section area from RED using concentrations relevant for the precipitation process is 0.014 ± 0.009 m<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>3</mn> </msup> </semantics> </math> </inline-formula> h<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics> </math> </inline-formula> (1.1 ± 0.7 g h<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics> </math> </inline-formula>) at 40 <inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mo>∘</mo> </msup> </semantics> </math> </inline-formula>C, while with concentrations relevant for evaporation, the hydrogen production per cross-section area was 0.034 ± 0.016 m<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>3</mn> </msup> </semantics> </math> </inline-formula> h<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics> </math> </inline-formula> (2.6 ± 1.3 g h<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics> </math> </inline-formula>). The modelled energy needed per cubic meter of hydrogen produced is 55 ± 22 kWh (700 ± 300 kWh kg<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics> </math> </inline-formula>) for the evaporation process and 8.22 ± 0.05 kWh (104.8 ± 0.6 kWh kg<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics> </math> </inline-formula>) for the precipitation process. Using RED together with the precipitation process has similar energy consumption per volume hydrogen produced compared to proton exchange membrane water electrolysis and alkaline water electrolysis, where the energy input to the Heat to H<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula>-process comes from low-grade waste heat. |
topic |
hydrogen production reverse electrodialysis waste heat |
url |
https://www.mdpi.com/1996-1073/12/18/3428 |
work_keys_str_mv |
AT kjerstiwergelandkrakhella heattohsub2subusingwasteheatforhydrogenproductionthroughreverseelectrodialysis AT robertbock heattohsub2subusingwasteheatforhydrogenproductionthroughreverseelectrodialysis AT odnestokkeburheim heattohsub2subusingwasteheatforhydrogenproductionthroughreverseelectrodialysis AT frodeseland heattohsub2subusingwasteheatforhydrogenproductionthroughreverseelectrodialysis AT kristianetienneeinarsrud heattohsub2subusingwasteheatforhydrogenproductionthroughreverseelectrodialysis |
_version_ |
1716798824343666688 |
spelling |
doaj-72311289fbc841578b2e1b9696b7eacb2020-11-24T20:52:50ZengMDPI AGEnergies1996-10732019-09-011218342810.3390/en12183428en12183428Heat to H<sub>2</sub>: Using Waste Heat for Hydrogen Production through Reverse ElectrodialysisKjersti Wergeland Krakhella0Robert Bock1Odne Stokke Burheim2Frode Seland3Kristian Etienne Einarsrud4Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, NorwayDepartment of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, NorwayDepartment of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, NorwayDepartment of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, NorwayDepartment of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, NorwayThis work presents an integrated hydrogen production system using reverse electrodialysis (RED) and waste heat, termed Heat to H<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula>. The driving potential in RED is a concentration difference over alternating anion and cation exchange membranes, where the electrode potential can be used directly for water splitting at the RED electrodes. Low-grade waste heat is used to restore the concentration difference in RED. In this study we investigate two approaches: one water removal process by evaporation and one salt removal process. Salt is precipitated in the thermally driven salt removal, thus introducing the need for a substantial change in solubility with temperature, which KNO<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>3</mn> </msub> </semantics> </math> </inline-formula> fulfils. Experimental data of ion conductivity of K<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mo>+</mo> </msup> </semantics> </math> </inline-formula> and NO<inline-formula> <math display="inline"> <semantics> <msubsup> <mrow></mrow> <mn>3</mn> <mo>−</mo> </msubsup> </semantics> </math> </inline-formula> in ion-exchange membranes is obtained. The ion conductivity of KNO<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>3</mn> </msub> </semantics> </math> </inline-formula> in the membranes was compared to NaCl and found to be equal in cation exchange membranes, but significantly lower in anion exchange membranes. The membrane resistance constitutes 98% of the total ohmic resistance using concentrations relevant for the precipitation process, while for the evaporation process, the membrane resistance constitutes over 70% of the total ohmic resistance at 40 <inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mo>∘</mo> </msup> </semantics> </math> </inline-formula>C. The modelled hydrogen production per cross-section area from RED using concentrations relevant for the precipitation process is 0.014 ± 0.009 m<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>3</mn> </msup> </semantics> </math> </inline-formula> h<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics> </math> </inline-formula> (1.1 ± 0.7 g h<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics> </math> </inline-formula>) at 40 <inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mo>∘</mo> </msup> </semantics> </math> </inline-formula>C, while with concentrations relevant for evaporation, the hydrogen production per cross-section area was 0.034 ± 0.016 m<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>3</mn> </msup> </semantics> </math> </inline-formula> h<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics> </math> </inline-formula> (2.6 ± 1.3 g h<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics> </math> </inline-formula>). The modelled energy needed per cubic meter of hydrogen produced is 55 ± 22 kWh (700 ± 300 kWh kg<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics> </math> </inline-formula>) for the evaporation process and 8.22 ± 0.05 kWh (104.8 ± 0.6 kWh kg<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics> </math> </inline-formula>) for the precipitation process. Using RED together with the precipitation process has similar energy consumption per volume hydrogen produced compared to proton exchange membrane water electrolysis and alkaline water electrolysis, where the energy input to the Heat to H<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula>-process comes from low-grade waste heat.https://www.mdpi.com/1996-1073/12/18/3428hydrogen productionreverse electrodialysiswaste heat |