THE LAND COVER CLASSIFICATION USING A FEATURE PYRAMID NETWORKS ARCHITECTURE FROM SATELLITE IMAGERY
Extracting land cover information from satellite imagery is of great importance for the task of automated monitoring in various remote sensing applications. Deep convolutional neural networks make this task more feasible, but they are limited by the small dataset of annotated images. In this paper,...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2020-08-01
|
Series: | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
Online Access: | https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B3-2020/241/2020/isprs-archives-XLIII-B3-2020-241-2020.pdf |
id |
doaj-71dd5746dc1f44579466c4bcd9a771b4 |
---|---|
record_format |
Article |
spelling |
doaj-71dd5746dc1f44579466c4bcd9a771b42020-11-25T03:42:21ZengCopernicus PublicationsThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences1682-17502194-90342020-08-01XLIII-B3-202024124610.5194/isprs-archives-XLIII-B3-2020-241-2020THE LAND COVER CLASSIFICATION USING A FEATURE PYRAMID NETWORKS ARCHITECTURE FROM SATELLITE IMAGERYQ. Zhang0Y. Zhang1P. Yang2Y. Meng3S. Zhuo4Z. Yang5The Third Institute of Photogrammetry and Remote Sensing, Ministry of Natural Resources, Chengdu, ChinaThe Third Institute of Photogrammetry and Remote Sensing, Ministry of Natural Resources, Chengdu, ChinaThe Third Institute of Photogrammetry and Remote Sensing, Ministry of Natural Resources, Chengdu, ChinaThe Third Institute of Photogrammetry and Remote Sensing, Ministry of Natural Resources, Chengdu, ChinaThe Third Institute of Photogrammetry and Remote Sensing, Ministry of Natural Resources, Chengdu, ChinaThe Third Institute of Photogrammetry and Remote Sensing, Ministry of Natural Resources, Chengdu, ChinaExtracting land cover information from satellite imagery is of great importance for the task of automated monitoring in various remote sensing applications. Deep convolutional neural networks make this task more feasible, but they are limited by the small dataset of annotated images. In this paper, we present a fully convolutional networks architecture, FPN-VGG, that combines Feature Pyramid Networks and VGG. In order to accomplish the task of land cover classification, we create a land cover dataset of pixel-wise annotated images, and employ a transfer learning step and the variant dice loss function to promote the performance of FPN-VGG. The results indicate that FPN-VGG shows more competence for land cover classification comparing with other state-of-the-art fully convolutional networks. The transfer learning and dice loss function are beneficial to improve the performance of on the small and unbalanced dataset. Our best model on the dataset gets an overall accuracy of 82.9%, an average F1 score of 66.0% and an average IoU of 52.7%.https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B3-2020/241/2020/isprs-archives-XLIII-B3-2020-241-2020.pdf |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Q. Zhang Y. Zhang P. Yang Y. Meng S. Zhuo Z. Yang |
spellingShingle |
Q. Zhang Y. Zhang P. Yang Y. Meng S. Zhuo Z. Yang THE LAND COVER CLASSIFICATION USING A FEATURE PYRAMID NETWORKS ARCHITECTURE FROM SATELLITE IMAGERY The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
author_facet |
Q. Zhang Y. Zhang P. Yang Y. Meng S. Zhuo Z. Yang |
author_sort |
Q. Zhang |
title |
THE LAND COVER CLASSIFICATION USING A FEATURE PYRAMID NETWORKS ARCHITECTURE FROM SATELLITE IMAGERY |
title_short |
THE LAND COVER CLASSIFICATION USING A FEATURE PYRAMID NETWORKS ARCHITECTURE FROM SATELLITE IMAGERY |
title_full |
THE LAND COVER CLASSIFICATION USING A FEATURE PYRAMID NETWORKS ARCHITECTURE FROM SATELLITE IMAGERY |
title_fullStr |
THE LAND COVER CLASSIFICATION USING A FEATURE PYRAMID NETWORKS ARCHITECTURE FROM SATELLITE IMAGERY |
title_full_unstemmed |
THE LAND COVER CLASSIFICATION USING A FEATURE PYRAMID NETWORKS ARCHITECTURE FROM SATELLITE IMAGERY |
title_sort |
land cover classification using a feature pyramid networks architecture from satellite imagery |
publisher |
Copernicus Publications |
series |
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
issn |
1682-1750 2194-9034 |
publishDate |
2020-08-01 |
description |
Extracting land cover information from satellite imagery is of great importance for the task of automated monitoring in various remote sensing applications. Deep convolutional neural networks make this task more feasible, but they are limited by the small dataset of annotated images. In this paper, we present a fully convolutional networks architecture, FPN-VGG, that combines Feature Pyramid Networks and VGG. In order to accomplish the task of land cover classification, we create a land cover dataset of pixel-wise annotated images, and employ a transfer learning step and the variant dice loss function to promote the performance of FPN-VGG. The results indicate that FPN-VGG shows more competence for land cover classification comparing with other state-of-the-art fully convolutional networks. The transfer learning and dice loss function are beneficial to improve the performance of on the small and unbalanced dataset. Our best model on the dataset gets an overall accuracy of 82.9%, an average F1 score of 66.0% and an average IoU of 52.7%. |
url |
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B3-2020/241/2020/isprs-archives-XLIII-B3-2020-241-2020.pdf |
work_keys_str_mv |
AT qzhang thelandcoverclassificationusingafeaturepyramidnetworksarchitecturefromsatelliteimagery AT yzhang thelandcoverclassificationusingafeaturepyramidnetworksarchitecturefromsatelliteimagery AT pyang thelandcoverclassificationusingafeaturepyramidnetworksarchitecturefromsatelliteimagery AT ymeng thelandcoverclassificationusingafeaturepyramidnetworksarchitecturefromsatelliteimagery AT szhuo thelandcoverclassificationusingafeaturepyramidnetworksarchitecturefromsatelliteimagery AT zyang thelandcoverclassificationusingafeaturepyramidnetworksarchitecturefromsatelliteimagery AT qzhang landcoverclassificationusingafeaturepyramidnetworksarchitecturefromsatelliteimagery AT yzhang landcoverclassificationusingafeaturepyramidnetworksarchitecturefromsatelliteimagery AT pyang landcoverclassificationusingafeaturepyramidnetworksarchitecturefromsatelliteimagery AT ymeng landcoverclassificationusingafeaturepyramidnetworksarchitecturefromsatelliteimagery AT szhuo landcoverclassificationusingafeaturepyramidnetworksarchitecturefromsatelliteimagery AT zyang landcoverclassificationusingafeaturepyramidnetworksarchitecturefromsatelliteimagery |
_version_ |
1724525733905170432 |