Vitamin D Actions on CD4+ T cells in Autoimmune Disease
This review summarizes and integrates research on vitamin D and CD4+ T lymphocyte biology to develop new mechanistic insights into the molecular etiology of autoimmune disease. A deep understanding of molecular mechanisms relevant to gene-environment interactions is needed to deliver etiology-based...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2015-03-01
|
Series: | Frontiers in Immunology |
Subjects: | |
Online Access: | http://journal.frontiersin.org/Journal/10.3389/fimmu.2015.00100/full |
id |
doaj-71d08dd81c3e43bcb63c5c8c48909fc1 |
---|---|
record_format |
Article |
spelling |
doaj-71d08dd81c3e43bcb63c5c8c48909fc12020-11-24T20:42:16ZengFrontiers Media S.A.Frontiers in Immunology1664-32242015-03-01610.3389/fimmu.2015.00100129327Vitamin D Actions on CD4+ T cells in Autoimmune DiseaseColleen Elizabeth Hayes0Shane L. Hubler1Jerott R. Moore2Lauren E. Barta3Corinne E. Praska4Faye E. Nashold5University of WisconsinUniversity of WisconsinUniversity of WisconsinUniversity of WisconsinUniversity of WisconsinUniversity of WisconsinThis review summarizes and integrates research on vitamin D and CD4+ T lymphocyte biology to develop new mechanistic insights into the molecular etiology of autoimmune disease. A deep understanding of molecular mechanisms relevant to gene-environment interactions is needed to deliver etiology-based autoimmune disease prevention and treatment strategies. Evidence linking sunlight, vitamin D, and the risk of multiple sclerosis and type 1 diabetes is summarized to develop the thesis that vitamin D is the environmental factor that most strongly influences autoimmune disease development. Evidence for CD4+ T cell involvement in autoimmune disease pathogenesis and for paracrine calcitriol signaling to CD4+ T lymphocytes is summarized to support the thesis that calcitriol is sunlight’s main protective signal transducer in autoimmune disease risk. Animal modeling and human mechanistic data to support the view that vitamin D probably influences thymic negative selection, effector Th1 and Th17 pathogenesis and responsiveness to extrinsic cell death signals, FoxP3+CD4+ Treg cell and CD4+ Tr1 cell functions, and a Th1-Tr1 switch. The proposed Th1-Tr1 switch appears to bridge two stable, self-reinforcing immune states, pro- and anti-inflammatory, each with a characteristic gene regulatory network. The bi-stable switch would enable T cells to integrate signals from pathogens, hormones, cell-cell interactions, and soluble mediators and respond in a biologically appropriate manner. Finally, we highlight unanswered questions that potentially informative future research directions that may speed delivery of etiology-based strategies to reduce autoimmune disease.http://journal.frontiersin.org/Journal/10.3389/fimmu.2015.00100/fullAsthmaAutoimmune DiseasesCD4-Positive T-LymphocytesMultiple SclerosisTh1 CellsVitamin D |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Colleen Elizabeth Hayes Shane L. Hubler Jerott R. Moore Lauren E. Barta Corinne E. Praska Faye E. Nashold |
spellingShingle |
Colleen Elizabeth Hayes Shane L. Hubler Jerott R. Moore Lauren E. Barta Corinne E. Praska Faye E. Nashold Vitamin D Actions on CD4+ T cells in Autoimmune Disease Frontiers in Immunology Asthma Autoimmune Diseases CD4-Positive T-Lymphocytes Multiple Sclerosis Th1 Cells Vitamin D |
author_facet |
Colleen Elizabeth Hayes Shane L. Hubler Jerott R. Moore Lauren E. Barta Corinne E. Praska Faye E. Nashold |
author_sort |
Colleen Elizabeth Hayes |
title |
Vitamin D Actions on CD4+ T cells in Autoimmune Disease |
title_short |
Vitamin D Actions on CD4+ T cells in Autoimmune Disease |
title_full |
Vitamin D Actions on CD4+ T cells in Autoimmune Disease |
title_fullStr |
Vitamin D Actions on CD4+ T cells in Autoimmune Disease |
title_full_unstemmed |
Vitamin D Actions on CD4+ T cells in Autoimmune Disease |
title_sort |
vitamin d actions on cd4+ t cells in autoimmune disease |
publisher |
Frontiers Media S.A. |
series |
Frontiers in Immunology |
issn |
1664-3224 |
publishDate |
2015-03-01 |
description |
This review summarizes and integrates research on vitamin D and CD4+ T lymphocyte biology to develop new mechanistic insights into the molecular etiology of autoimmune disease. A deep understanding of molecular mechanisms relevant to gene-environment interactions is needed to deliver etiology-based autoimmune disease prevention and treatment strategies. Evidence linking sunlight, vitamin D, and the risk of multiple sclerosis and type 1 diabetes is summarized to develop the thesis that vitamin D is the environmental factor that most strongly influences autoimmune disease development. Evidence for CD4+ T cell involvement in autoimmune disease pathogenesis and for paracrine calcitriol signaling to CD4+ T lymphocytes is summarized to support the thesis that calcitriol is sunlight’s main protective signal transducer in autoimmune disease risk. Animal modeling and human mechanistic data to support the view that vitamin D probably influences thymic negative selection, effector Th1 and Th17 pathogenesis and responsiveness to extrinsic cell death signals, FoxP3+CD4+ Treg cell and CD4+ Tr1 cell functions, and a Th1-Tr1 switch. The proposed Th1-Tr1 switch appears to bridge two stable, self-reinforcing immune states, pro- and anti-inflammatory, each with a characteristic gene regulatory network. The bi-stable switch would enable T cells to integrate signals from pathogens, hormones, cell-cell interactions, and soluble mediators and respond in a biologically appropriate manner. Finally, we highlight unanswered questions that potentially informative future research directions that may speed delivery of etiology-based strategies to reduce autoimmune disease. |
topic |
Asthma Autoimmune Diseases CD4-Positive T-Lymphocytes Multiple Sclerosis Th1 Cells Vitamin D |
url |
http://journal.frontiersin.org/Journal/10.3389/fimmu.2015.00100/full |
work_keys_str_mv |
AT colleenelizabethhayes vitamindactionsoncd4tcellsinautoimmunedisease AT shanelhubler vitamindactionsoncd4tcellsinautoimmunedisease AT jerottrmoore vitamindactionsoncd4tcellsinautoimmunedisease AT laurenebarta vitamindactionsoncd4tcellsinautoimmunedisease AT corinneepraska vitamindactionsoncd4tcellsinautoimmunedisease AT fayeenashold vitamindactionsoncd4tcellsinautoimmunedisease |
_version_ |
1716822776759713792 |