Intracerebral Administration of a Ligand-ASO Conjugate Selectively Reduces α-Synuclein Accumulation in Monoamine Neurons of Double Mutant Human A30P*A53T*α-Synuclein Transgenic Mice

α-Synuclein (α-Syn) protein is involved in the pathogenesis of Parkinson’s disease (PD). Point mutations and multiplications of the α-Syn, which encodes the <i>SNCA</i> gene, are correlated with early-onset PD, therefore the reduction in a-Syn synthesis could be a potential therapy for P...

Full description

Bibliographic Details
Main Authors: Rubén Pavia-Collado, Valentín Cóppola-Segovia, Lluís Miquel-Rio, Diana Alarcón-Aris, Raquel Rodríguez-Aller, María Torres-López, Verónica Paz, Esther Ruiz-Bronchal, Leticia Campa, Francesc Artigas, Andrés Montefeltro, Raquel Revilla, Analia Bortolozzi
Format: Article
Language:English
Published: MDPI AG 2021-03-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/22/6/2939
Description
Summary:α-Synuclein (α-Syn) protein is involved in the pathogenesis of Parkinson’s disease (PD). Point mutations and multiplications of the α-Syn, which encodes the <i>SNCA</i> gene, are correlated with early-onset PD, therefore the reduction in a-Syn synthesis could be a potential therapy for PD if delivered to the key affected neurons. Several experimental strategies for PD have been developed in recent years using oligonucleotide therapeutics. However, some of them have failed or even caused neuronal toxicity. One limiting step in the success of oligonucleotide-based therapeutics is their delivery to the brain compartment, and once there, to selected neuronal populations. Previously, we developed an indatraline-conjugated antisense oligonucleotide (IND-1233-ASO), that selectively reduces α-Syn synthesis in midbrain monoamine neurons of mice, and nonhuman primates. Here, we extended these observations using a transgenic male mouse strain carrying both A30P and A53T mutant human α-Syn (A30P*A53T*α-Syn). We found that A30P*A53T*α-Syn mice at 4–5 months of age showed 3.5-fold increases in human α-Syn expression in dopamine (DA) and norepinephrine (NE) neurons of the substantia nigra pars compacta (SNc) and locus coeruleus (LC), respectively, compared with mouse α-Syn levels. In parallel, transgenic mice exhibited altered nigrostriatal DA neurotransmission, motor alterations, and an anxiety-like phenotype. Intracerebroventricular IND-1233-ASO administration (100 µg/day, 28 days) prevented the α-Syn synthesis and accumulation in the SNc and LC, and recovered DA neurotransmission, although it did not reverse the behavioral phenotype. Therefore, the present therapeutic strategy based on a conjugated ASO could be used for the selective inhibition of α-Syn expression in PD-vulnerable monoamine neurons, showing the benefit of the optimization of ASO molecules as a disease modifying therapy for PD and related α-synucleinopathies.
ISSN:1661-6596
1422-0067