Summary: | This invited paper considers reasons why exact measurements of fast electron and ion losses in tokamaks, and particularly i n a scrape-off-layer and near a divertor region, are necessary in order to master nuclear fusion energy production. Attention is also paid to direct measurements of escaping fusion products from D-D and D-T reactions, and in particular of fast alphas which might be used for plasma heating. The second part describes the generation of so-called runaway and ripple-born electrons which might induce high energy losses and cause severe damages of internal walls in fusion facilities. Advantages and disadvantages of different diagnostic methods applied for studies of such fast electrons are discussed. Particular attention is paid to development of a direct measuring technique based on the Cherenkov effect which might be induced by fast electrons in appropriate radiators. There are presented various versions of Cherenkov-type probes which have been developed by the NCBJ team and applied in different tokamak experiments. The third part is devoted to direct measurements of fast ions (including those produced by the nuclear fusion reactions) which can escape from a high-temperature plasma region. Investigation of fast fusion-produced protons from tokamak discharges is reported. New ion probes, which were developed by the NCBJ team, are also presented. For the first time there is given a detailed description of an ion pinhole camera, which enables irradiation of several nuclear track detectors during a single tokamak discharge, and a miniature Thomson-type mass-spectrometer, which can be used for ion measurements at plasma borders.
|