Summary: | The dispersal capacity of plant species that rely on animals to disperse their seeds (biotic dispersal) can alter with changes to the populations of their keystone dispersal vectors. Knowledge on how biotic dispersal systems vary across landscapes allows better understanding of factors driving plant persistence. Myrmecochory, seed dispersal by ants, is a common method of biotic dispersal for many plant species throughout the world. We tested if the seed dispersal system of Acacia terminalis (Fabaceae), a known myrmecochore, differed between two elevations in the Greater Blue Mountains World Heritage Area, in southeastern Australia. We compared ant assemblages, seed removal rates of ants and other vertebrates (bird and mammal) and the dominant seed-dispersing ant genera. At low elevations (c. 200 m a.s.l) seed removal was predominantly by ants, however, at high elevation sites (c. 700 m a.s.l) vertebrate seed dispersers or seed predators were present, removing over 60% of seeds from experimental depots when ants were excluded. We found a switch in the keystone seed-dispersing ant genera from Rhytidoponera at low elevations sites to Aphaenogaster at high elevation sites. This resulted in more seeds being removed faster at low elevation sites compared to high elevation sites, however long-term seed removal rates were equal between elevations. Differences in the keystone seed removalist, and the addition of an alternate dispersal vector or seed predator at high elevations, will result in different dispersal and establishment patterns for A. terminalis at different elevations. These differences in dispersal concur with other global studies that report myrmecochorous dispersal systems alter with elevation.
|