Discrete-Time Angle Constraint Interception with Model-Assisted Target Maneuver Estimator
This paper investigates the problem of designing angle constraint guidance law against unknown maneuvering targets based on discrete-time sliding mode control theory. Invoking the fact that the future course of action of the target, an independent entity, cannot be predicted beforehand due to its co...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2020-01-01
|
Series: | International Journal of Aerospace Engineering |
Online Access: | http://dx.doi.org/10.1155/2020/1764510 |
Summary: | This paper investigates the problem of designing angle constraint guidance law against unknown maneuvering targets based on discrete-time sliding mode control theory. Invoking the fact that the future course of action of the target, an independent entity, cannot be predicted beforehand due to its complexity and unpredictability, a model-assisted discrete-time disturbance observer in cooperation with a singularity-free strategy is proposed first to estimate the target maneuver. Based on the reconstructed signal and a fast convergence time-varying sliding surface, a new chattering-mitigated super-twisting-like discrete-time impact angle constraint guidance law is then synthesized. Stability analysis shows that the closed-loop system trajectory can be forced to enter into a small region around the sliding surface. Simulations and comparisons with classical discrete-time sliding mode guidance law validate the effectiveness of the proposed guidance law. |
---|---|
ISSN: | 1687-5966 1687-5974 |