Global Behavior of the Difference Equation xn+1=(p+xn-1)/(qxn+xn-1)
We study the following difference equation xn+1=(p+xn-1)/(qxn+xn-1), n=0,1,…, where p,q∈(0,+∞) and the initial conditions x-1,x0∈(0,+∞). We show that every positive solution of the above equation either converges to a finite limit or to a two cycle, which confirms that the Conjecture 6.10.4 proposed...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2010-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2010/237129 |
Summary: | We study the following difference equation xn+1=(p+xn-1)/(qxn+xn-1), n=0,1,…, where p,q∈(0,+∞) and the initial conditions x-1,x0∈(0,+∞). We show that every positive solution of the above equation either converges to a finite limit or to a two cycle, which confirms that the Conjecture 6.10.4 proposed by Kulenović and Ladas (2002) is true. |
---|---|
ISSN: | 1085-3375 1687-0409 |