Poly (hydroxybutyrate co hydroxyvalerate) Nanofibrous Scaffold Containing HydroxyapatiteBredigite Nanoparticles: Characterization and Biological Evaluation
In this work, poly (hydroxybutyrate co hydroxyvalerate) (PHBV) composite nanofibrous scaffold containing hydroxyapatite/bredigite (HABR) nanoparticles was fabricated through electrospining method. The morphology of prepared nanofibers and the state of the nanoparticles dispersion in nanofiber matri...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | fas |
Published: |
Isfahan University of Technology
2017-11-01
|
Series: | Journal of Advanced Materials in Engineering |
Subjects: | |
Online Access: | http://jame.iut.ac.ir/article-1-805-en.html |
id |
doaj-718f42b6adae4673baae99a79ba5f024 |
---|---|
record_format |
Article |
spelling |
doaj-718f42b6adae4673baae99a79ba5f0242021-03-08T10:00:10ZfasIsfahan University of TechnologyJournal of Advanced Materials in Engineering2251-600X2423-57332017-11-013638799Poly (hydroxybutyrate co hydroxyvalerate) Nanofibrous Scaffold Containing HydroxyapatiteBredigite Nanoparticles: Characterization and Biological EvaluationM. Kouhi0M. Shamanian1M. Fathi2Molamma Prabhakaran3Seeram Ramakrishna4 1. Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran. 1. Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran. 1. Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran. 2. Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore. 2. Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore. In this work, poly (hydroxybutyrate co hydroxyvalerate) (PHBV) composite nanofibrous scaffold containing hydroxyapatite/bredigite (HABR) nanoparticles was fabricated through electrospining method. The morphology of prepared nanofibers and the state of the nanoparticles dispersion in nanofiber matrix were investigated using scanning and transmission electron microscopy, respectively. Evaluation of the mechanical properties of the nanofibrous scaffolds revealed that there is a limit to the nanoparticle concentration at which nanoparticles can improve the mechanical properties of the nanofibrous scaffolds. According to the results, PHBV/HABR nanofibers showed higher wettability compared to PHBV nanofibers. In vitro cell culture assay was done using human fetal osteoblast cells on nanofibrous scaffold. MTS assay revealed that cell proliferation on the composite nanofibrous scaffold was significantly higher than those on the pure scaffold after 10 and 15 days. Scanning electron microscopy- Energy dispersive X-ray spectroscopy and CMFDA colorimeter assay analysis showed that the cells on the PHBV/HABR scaffolds acquired higher mineral deposition than the cells on the pure PHBV and control sample scaffold. Based on the results we concluded that PHBV/HABR nanofibers scaffold with higher wettability, improved mechanical properties and cell behavior hold great potential in bone regeneration applications.http://jame.iut.ac.ir/article-1-805-en.htmlnanofibrous scaffoldpoly (hydroxybutirate co hydroxyvalerate)hydroxyapatitebredigitebone regeneration. |
collection |
DOAJ |
language |
fas |
format |
Article |
sources |
DOAJ |
author |
M. Kouhi M. Shamanian M. Fathi Molamma Prabhakaran Seeram Ramakrishna |
spellingShingle |
M. Kouhi M. Shamanian M. Fathi Molamma Prabhakaran Seeram Ramakrishna Poly (hydroxybutyrate co hydroxyvalerate) Nanofibrous Scaffold Containing HydroxyapatiteBredigite Nanoparticles: Characterization and Biological Evaluation Journal of Advanced Materials in Engineering nanofibrous scaffold poly (hydroxybutirate co hydroxyvalerate) hydroxyapatite bredigite bone regeneration. |
author_facet |
M. Kouhi M. Shamanian M. Fathi Molamma Prabhakaran Seeram Ramakrishna |
author_sort |
M. Kouhi |
title |
Poly (hydroxybutyrate co hydroxyvalerate) Nanofibrous Scaffold Containing HydroxyapatiteBredigite Nanoparticles: Characterization and Biological Evaluation |
title_short |
Poly (hydroxybutyrate co hydroxyvalerate) Nanofibrous Scaffold Containing HydroxyapatiteBredigite Nanoparticles: Characterization and Biological Evaluation |
title_full |
Poly (hydroxybutyrate co hydroxyvalerate) Nanofibrous Scaffold Containing HydroxyapatiteBredigite Nanoparticles: Characterization and Biological Evaluation |
title_fullStr |
Poly (hydroxybutyrate co hydroxyvalerate) Nanofibrous Scaffold Containing HydroxyapatiteBredigite Nanoparticles: Characterization and Biological Evaluation |
title_full_unstemmed |
Poly (hydroxybutyrate co hydroxyvalerate) Nanofibrous Scaffold Containing HydroxyapatiteBredigite Nanoparticles: Characterization and Biological Evaluation |
title_sort |
poly (hydroxybutyrate co hydroxyvalerate) nanofibrous scaffold containing hydroxyapatitebredigite nanoparticles: characterization and biological evaluation |
publisher |
Isfahan University of Technology |
series |
Journal of Advanced Materials in Engineering |
issn |
2251-600X 2423-5733 |
publishDate |
2017-11-01 |
description |
In this work, poly (hydroxybutyrate co hydroxyvalerate) (PHBV) composite nanofibrous scaffold containing hydroxyapatite/bredigite (HABR) nanoparticles was fabricated through electrospining method. The morphology of prepared nanofibers and the state of the nanoparticles dispersion in nanofiber matrix were investigated using scanning and transmission electron microscopy, respectively. Evaluation of the mechanical properties of the nanofibrous scaffolds revealed that there is a limit to the nanoparticle concentration at which nanoparticles can improve the mechanical properties of the nanofibrous scaffolds. According to the results, PHBV/HABR nanofibers showed higher wettability compared to PHBV nanofibers. In vitro cell culture assay was done using human fetal osteoblast cells on nanofibrous scaffold. MTS assay revealed that cell proliferation on the composite nanofibrous scaffold was significantly higher than those on the pure scaffold after 10 and 15 days. Scanning electron microscopy- Energy dispersive X-ray spectroscopy and CMFDA colorimeter assay analysis showed that the cells on the PHBV/HABR scaffolds acquired higher mineral deposition than the cells on the pure PHBV and control sample scaffold. Based on the results we concluded that PHBV/HABR nanofibers scaffold with higher wettability, improved mechanical properties and cell behavior hold great potential in bone regeneration applications. |
topic |
nanofibrous scaffold poly (hydroxybutirate co hydroxyvalerate) hydroxyapatite bredigite bone regeneration. |
url |
http://jame.iut.ac.ir/article-1-805-en.html |
work_keys_str_mv |
AT mkouhi polyhydroxybutyratecohydroxyvaleratenanofibrousscaffoldcontaininghydroxyapatitebredigitenanoparticlescharacterizationandbiologicalevaluation AT mshamanian polyhydroxybutyratecohydroxyvaleratenanofibrousscaffoldcontaininghydroxyapatitebredigitenanoparticlescharacterizationandbiologicalevaluation AT mfathi polyhydroxybutyratecohydroxyvaleratenanofibrousscaffoldcontaininghydroxyapatitebredigitenanoparticlescharacterizationandbiologicalevaluation AT molammaprabhakaran polyhydroxybutyratecohydroxyvaleratenanofibrousscaffoldcontaininghydroxyapatitebredigitenanoparticlescharacterizationandbiologicalevaluation AT seeramramakrishna polyhydroxybutyratecohydroxyvaleratenanofibrousscaffoldcontaininghydroxyapatitebredigitenanoparticlescharacterizationandbiologicalevaluation |
_version_ |
1724228989038362624 |