Similarity and a Duality for Fullerenes
Fullerenes are molecules of carbon that are modeled by trivalent plane graphs with only pentagonal and hexagonal faces. Scaling up a fullerene gives a notion of similarity, and fullerenes are partitioned into similarity classes. In this expository article, we illustrate how the values of two importa...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2015-11-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | http://www.mdpi.com/2073-8994/7/4/2047 |
id |
doaj-718920b395bd49c8863c80c2641e8a95 |
---|---|
record_format |
Article |
spelling |
doaj-718920b395bd49c8863c80c2641e8a952020-11-24T22:05:34ZengMDPI AGSymmetry2073-89942015-11-01742047206110.3390/sym7042047sym7042047Similarity and a Duality for FullerenesJennifer J. Edmond0Jack E. Graver1Department of Mathematics, Syracuse University, Syracuse, NY 13244, USADepartment of Mathematics, Syracuse University, Syracuse, NY 13244, USAFullerenes are molecules of carbon that are modeled by trivalent plane graphs with only pentagonal and hexagonal faces. Scaling up a fullerene gives a notion of similarity, and fullerenes are partitioned into similarity classes. In this expository article, we illustrate how the values of two important fullerene parameters can be deduced for all fullerenes in a similarity class by computing the values of these parameters for just the three smallest representatives of that class. In addition, it turns out that there is a natural duality theory for similarity classes of fullerenes based on one of the most important fullerene construction techniques: leapfrog construction. The literature on fullerenes is very extensive, and since this is a general interest journal, we will summarize and illustrate the fundamental results that we will need to develop similarity and this duality.http://www.mdpi.com/2073-8994/7/4/2047fullereneleapfrog constructionClar numberFries number |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Jennifer J. Edmond Jack E. Graver |
spellingShingle |
Jennifer J. Edmond Jack E. Graver Similarity and a Duality for Fullerenes Symmetry fullerene leapfrog construction Clar number Fries number |
author_facet |
Jennifer J. Edmond Jack E. Graver |
author_sort |
Jennifer J. Edmond |
title |
Similarity and a Duality for Fullerenes |
title_short |
Similarity and a Duality for Fullerenes |
title_full |
Similarity and a Duality for Fullerenes |
title_fullStr |
Similarity and a Duality for Fullerenes |
title_full_unstemmed |
Similarity and a Duality for Fullerenes |
title_sort |
similarity and a duality for fullerenes |
publisher |
MDPI AG |
series |
Symmetry |
issn |
2073-8994 |
publishDate |
2015-11-01 |
description |
Fullerenes are molecules of carbon that are modeled by trivalent plane graphs with only pentagonal and hexagonal faces. Scaling up a fullerene gives a notion of similarity, and fullerenes are partitioned into similarity classes. In this expository article, we illustrate how the values of two important fullerene parameters can be deduced for all fullerenes in a similarity class by computing the values of these parameters for just the three smallest representatives of that class. In addition, it turns out that there is a natural duality theory for similarity classes of fullerenes based on one of the most important fullerene construction techniques: leapfrog construction. The literature on fullerenes is very extensive, and since this is a general interest journal, we will summarize and illustrate the fundamental results that we will need to develop similarity and this duality. |
topic |
fullerene leapfrog construction Clar number Fries number |
url |
http://www.mdpi.com/2073-8994/7/4/2047 |
work_keys_str_mv |
AT jenniferjedmond similarityandadualityforfullerenes AT jackegraver similarityandadualityforfullerenes |
_version_ |
1725825714313232384 |