On the equivalence of the sum and the maximal term of the Dirichlet series absolutely convergent in the half-plane
For absolutely convergent in the half-plane ${zcolon {mRe,}z<0}$ Dirichlet series $F(z)=sumlimits_{n=0}^{+infty}a_ne^{zlambda_n},$ where $0leqlambda_nuparrow +infty (0leq nuparrow+infty),$ we establish conditions on the coefficients of itsNewton majorant, sufficient for the relation $F(x+iy)=(1+o...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Vasyl Stefanyk Precarpathian National University
2009-06-01
|
Series: | Karpatsʹkì Matematičnì Publìkacìï |
Online Access: | http://journals.pu.if.ua/index.php/cmp/article/view/18/15 |
id |
doaj-717bbb36482e4f73947091306d408b99 |
---|---|
record_format |
Article |
spelling |
doaj-717bbb36482e4f73947091306d408b992020-11-25T01:51:14ZengVasyl Stefanyk Precarpathian National UniversityKarpatsʹkì Matematičnì Publìkacìï2075-98272009-06-0111100106On the equivalence of the sum and the maximal term of the Dirichlet series absolutely convergent in the half-planeYa. Z. StasyukO. B. SkaskivFor absolutely convergent in the half-plane ${zcolon {mRe,}z<0}$ Dirichlet series $F(z)=sumlimits_{n=0}^{+infty}a_ne^{zlambda_n},$ where $0leqlambda_nuparrow +infty (0leq nuparrow+infty),$ we establish conditions on the coefficients of itsNewton majorant, sufficient for the relation $F(x+iy)=(1+o(1))a_{u(x)}e^{(x+iy)lambda_{u(x)}}$ to hold as$xo -0$ outside some set $E$ of zero logarithmic density in thepoint $0,$ uniformly by $yin{mathbb R}$.http://journals.pu.if.ua/index.php/cmp/article/view/18/15 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ya. Z. Stasyuk O. B. Skaskiv |
spellingShingle |
Ya. Z. Stasyuk O. B. Skaskiv On the equivalence of the sum and the maximal term of the Dirichlet series absolutely convergent in the half-plane Karpatsʹkì Matematičnì Publìkacìï |
author_facet |
Ya. Z. Stasyuk O. B. Skaskiv |
author_sort |
Ya. Z. Stasyuk |
title |
On the equivalence of the sum and the maximal term of the Dirichlet series absolutely convergent in the half-plane |
title_short |
On the equivalence of the sum and the maximal term of the Dirichlet series absolutely convergent in the half-plane |
title_full |
On the equivalence of the sum and the maximal term of the Dirichlet series absolutely convergent in the half-plane |
title_fullStr |
On the equivalence of the sum and the maximal term of the Dirichlet series absolutely convergent in the half-plane |
title_full_unstemmed |
On the equivalence of the sum and the maximal term of the Dirichlet series absolutely convergent in the half-plane |
title_sort |
on the equivalence of the sum and the maximal term of the dirichlet series absolutely convergent in the half-plane |
publisher |
Vasyl Stefanyk Precarpathian National University |
series |
Karpatsʹkì Matematičnì Publìkacìï |
issn |
2075-9827 |
publishDate |
2009-06-01 |
description |
For absolutely convergent in the half-plane ${zcolon {mRe,}z<0}$ Dirichlet series $F(z)=sumlimits_{n=0}^{+infty}a_ne^{zlambda_n},$ where $0leqlambda_nuparrow +infty (0leq nuparrow+infty),$ we establish conditions on the coefficients of itsNewton majorant, sufficient for the relation $F(x+iy)=(1+o(1))a_{u(x)}e^{(x+iy)lambda_{u(x)}}$ to hold as$xo -0$ outside some set $E$ of zero logarithmic density in thepoint $0,$ uniformly by $yin{mathbb R}$. |
url |
http://journals.pu.if.ua/index.php/cmp/article/view/18/15 |
work_keys_str_mv |
AT yazstasyuk ontheequivalenceofthesumandthemaximaltermofthedirichletseriesabsolutelyconvergentinthehalfplane AT obskaskiv ontheequivalenceofthesumandthemaximaltermofthedirichletseriesabsolutelyconvergentinthehalfplane |
_version_ |
1724997697985839104 |