On the equivalence of the sum and the maximal term of the Dirichlet series absolutely convergent in the half-plane

For absolutely convergent in the half-plane ${zcolon {mRe,}z<0}$ Dirichlet series $F(z)=sumlimits_{n=0}^{+infty}a_ne^{zlambda_n},$ where $0leqlambda_nuparrow +infty (0leq nuparrow+infty),$ we establish conditions on the coefficients of itsNewton majorant, sufficient for the relation $F(x+iy)=(1+o...

Full description

Bibliographic Details
Main Authors: Ya. Z. Stasyuk, O. B. Skaskiv
Format: Article
Language:English
Published: Vasyl Stefanyk Precarpathian National University 2009-06-01
Series:Karpatsʹkì Matematičnì Publìkacìï
Online Access:http://journals.pu.if.ua/index.php/cmp/article/view/18/15
id doaj-717bbb36482e4f73947091306d408b99
record_format Article
spelling doaj-717bbb36482e4f73947091306d408b992020-11-25T01:51:14ZengVasyl Stefanyk Precarpathian National UniversityKarpatsʹkì Matematičnì Publìkacìï2075-98272009-06-0111100106On the equivalence of the sum and the maximal term of the Dirichlet series absolutely convergent in the half-planeYa. Z. StasyukO. B. SkaskivFor absolutely convergent in the half-plane ${zcolon {mRe,}z<0}$ Dirichlet series $F(z)=sumlimits_{n=0}^{+infty}a_ne^{zlambda_n},$ where $0leqlambda_nuparrow +infty (0leq nuparrow+infty),$ we establish conditions on the coefficients of itsNewton majorant, sufficient for the relation $F(x+iy)=(1+o(1))a_{u(x)}e^{(x+iy)lambda_{u(x)}}$ to hold as$xo -0$ outside some set $E$ of zero logarithmic density in thepoint $0,$ uniformly by $yin{mathbb R}$.http://journals.pu.if.ua/index.php/cmp/article/view/18/15
collection DOAJ
language English
format Article
sources DOAJ
author Ya. Z. Stasyuk
O. B. Skaskiv
spellingShingle Ya. Z. Stasyuk
O. B. Skaskiv
On the equivalence of the sum and the maximal term of the Dirichlet series absolutely convergent in the half-plane
Karpatsʹkì Matematičnì Publìkacìï
author_facet Ya. Z. Stasyuk
O. B. Skaskiv
author_sort Ya. Z. Stasyuk
title On the equivalence of the sum and the maximal term of the Dirichlet series absolutely convergent in the half-plane
title_short On the equivalence of the sum and the maximal term of the Dirichlet series absolutely convergent in the half-plane
title_full On the equivalence of the sum and the maximal term of the Dirichlet series absolutely convergent in the half-plane
title_fullStr On the equivalence of the sum and the maximal term of the Dirichlet series absolutely convergent in the half-plane
title_full_unstemmed On the equivalence of the sum and the maximal term of the Dirichlet series absolutely convergent in the half-plane
title_sort on the equivalence of the sum and the maximal term of the dirichlet series absolutely convergent in the half-plane
publisher Vasyl Stefanyk Precarpathian National University
series Karpatsʹkì Matematičnì Publìkacìï
issn 2075-9827
publishDate 2009-06-01
description For absolutely convergent in the half-plane ${zcolon {mRe,}z<0}$ Dirichlet series $F(z)=sumlimits_{n=0}^{+infty}a_ne^{zlambda_n},$ where $0leqlambda_nuparrow +infty (0leq nuparrow+infty),$ we establish conditions on the coefficients of itsNewton majorant, sufficient for the relation $F(x+iy)=(1+o(1))a_{u(x)}e^{(x+iy)lambda_{u(x)}}$ to hold as$xo -0$ outside some set $E$ of zero logarithmic density in thepoint $0,$ uniformly by $yin{mathbb R}$.
url http://journals.pu.if.ua/index.php/cmp/article/view/18/15
work_keys_str_mv AT yazstasyuk ontheequivalenceofthesumandthemaximaltermofthedirichletseriesabsolutelyconvergentinthehalfplane
AT obskaskiv ontheequivalenceofthesumandthemaximaltermofthedirichletseriesabsolutelyconvergentinthehalfplane
_version_ 1724997697985839104