Modeling and Optimization of a CoolingTower-Assisted Heat Pump System

To minimize the total energy consumption of a cooling tower-assisted heat pump (CTAHP) system in cooling mode, a model-based control strategy with hybrid optimization algorithm for the system is presented in this paper. An existing experimental device, which mainly contains a closed wet cooling towe...

Full description

Bibliographic Details
Main Authors: Xiaoqing Wei, Nianping Li, Jinqing Peng, Jianlin Cheng, Jinhua Hu, Meng Wang
Format: Article
Language:English
Published: MDPI AG 2017-05-01
Series:Energies
Subjects:
Online Access:http://www.mdpi.com/1996-1073/10/5/733
Description
Summary:To minimize the total energy consumption of a cooling tower-assisted heat pump (CTAHP) system in cooling mode, a model-based control strategy with hybrid optimization algorithm for the system is presented in this paper. An existing experimental device, which mainly contains a closed wet cooling tower with counter flow construction, a condenser water loop and a water-to-water heat pump unit, is selected as the study object. Theoretical and empirical models of the related components and their interactions are developed. The four variables, viz. desired cooling load, ambient wet-bulb temperature, temperature and flow rate of chilled water at the inlet of evaporator, are set to independent variables. The system power consumption can be minimized by optimizing input powers of cooling tower fan, spray water pump, condenser water pump and compressor. The optimal input power of spray water pump is determined experimentally. Implemented on MATLAB, a hybrid optimization algorithm, which combines the Limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm with the greedy diffusion search (GDS) algorithm, is incorporated to solve the minimization problem of energy consumption and predict the system’s optimal set-points under quasi-steady-state conditions. The integrated simulation tool is validated against experimental data. The results obtained demonstrate the proposed operation strategy is reliable, and can save energy by 20.8% as compared to an uncontrolled system under certain testing conditions.
ISSN:1996-1073