Forecasting of Coalbed Methane Daily Production Based on T-LSTM Neural Networks

Accurately forecasting the daily production of coalbed methane (CBM) is important forformulating associated drainage parameters and evaluating the economic benefit of CBM mining. Daily production of CBM depends on many factors, making it difficult to predict using conventional mathematical models. B...

Full description

Bibliographic Details
Main Authors: Xijie Xu, Xiaoping Rui, Yonglei Fan, Tian Yu, Yiwen Ju
Format: Article
Language:English
Published: MDPI AG 2020-05-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/12/5/861
Description
Summary:Accurately forecasting the daily production of coalbed methane (CBM) is important forformulating associated drainage parameters and evaluating the economic benefit of CBM mining. Daily production of CBM depends on many factors, making it difficult to predict using conventional mathematical models. Because traditional methods do not reflect the long-term time series characteristics of CBM production, this study first used a long short-term memory neural network (LSTM) and transfer learning (TL) method for time series forecasting of CBM daily production. Based on the LSTM model, we introduced the idea of transfer learning and proposed a Transfer-LSTM (T-LSTM) CBM production forecasting model. This approach first uses a large amount of data similar to the target to pretrain the weights of the LSTM network, then uses transfer learning to fine-tune LSTM network parameters a second time, so as to obtain the final T-LSTM model. Experiments were carried out using daily CBM production data for the Panhe Demonstration Zone at southern Qinshui basin in China. Based on the results, the idea of transfer learning can solve the problem of insufficient samples during LSTM training. Prediction results for wells that entered the stable period earlier were more accurate, whereas results for types with unstable production in the early stage require further exploration. Because CBM wells daily production data have symmetrical similarities, which can provide a reference for the prediction of other wells, so our proposed T-LSTM network can achieve good results for the production forecast and can provide guidance for forecasting production of CBM wells.
ISSN:2073-8994