Number of Spanning Trees in the Sequence of Some Graphs
In mathematics, one always tries to get new structures from given ones. This also applies to the realm of graphs, where one can generate many new graphs from a given set of graphs. In this work, using knowledge of difference equations, we drive the explicit formulas for the number of spanning trees...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi-Wiley
2019-01-01
|
Series: | Complexity |
Online Access: | http://dx.doi.org/10.1155/2019/4271783 |
Summary: | In mathematics, one always tries to get new structures from given ones. This also applies to the realm of graphs, where one can generate many new graphs from a given set of graphs. In this work, using knowledge of difference equations, we drive the explicit formulas for the number of spanning trees in the sequence of some graphs generated by a triangle by electrically equivalent transformations and rules of weighted generating function. Finally, we compare the entropy of our graphs with other studied graphs with average degree being 4, 5, and 6. |
---|---|
ISSN: | 1076-2787 1099-0526 |