The Pre-Potential of a Field Propagating with the Speed of Light and Its Dual Symmetry

Relativity theory assumes that force fields propagate with the speed of light. We show that such force fields generated by a single source can be described by a pre-potential, which is a complex-valued function on spacetime outside the worldline of the source. The pre-potential is invariant under a...

Full description

Bibliographic Details
Main Authors: Yaakov Friedman, David Hai Gootvilig, Tzvi Scarr
Format: Article
Language:English
Published: MDPI AG 2019-11-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/11/12/1430
Description
Summary:Relativity theory assumes that force fields propagate with the speed of light. We show that such force fields generated by a single source can be described by a pre-potential, which is a complex-valued function on spacetime outside the worldline of the source. The pre-potential is invariant under a spin-half representation of the Lorentz group acting on complexified spacetime. The complex four-potential of such a field is defined and calculated explicitly from the pre-potential without assuming any particular force law for the field. The real part of the obtained four-potential coincides with the known Liénard−Wiechert potential. The symmetry of the four-potential is described herein. The pre-potential satisfies the wave equation. The single source electromagnetic field derived from this four-potential is self-dual or anti-self-dual. The pre-potential and the four-potential are extended to a field with several sources.
ISSN:2073-8994