Daily Concentrations of PM<sub>2.5</sub> in the Valencian Community Using Random Forest for the Period 2008–2018

Fine particulate matter (PM<sub>2.5</sub>) is a global problem that affects the population health and contributes to climate change. Remote sensing provides useful information for the development of air quality models. This work aims to obtain a daily model of PM<sub>2.5</sub>...

Full description

Bibliographic Details
Main Authors: Soledad Natacha Represa, Jesús Palomar-Vázquez, Andrés Porta, Alfonso Fernández-Sarría
Format: Article
Language:English
Published: MDPI AG 2019-07-01
Series:Proceedings
Subjects:
LUR
Online Access:https://www.mdpi.com/2504-3900/19/1/13
id doaj-7108a7543d6f4f71bded9226698a7e1b
record_format Article
spelling doaj-7108a7543d6f4f71bded9226698a7e1b2020-11-24T21:24:23ZengMDPI AGProceedings2504-39002019-07-011911310.3390/proceedings2019019013proceedings2019019013Daily Concentrations of PM<sub>2.5</sub> in the Valencian Community Using Random Forest for the Period 2008–2018Soledad Natacha Represa0Jesús Palomar-Vázquez1Andrés Porta2Alfonso Fernández-Sarría3Centro de Investigaciones del Medioambiente, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata 1900, ArgentinaGeo-Environmental Cartography and Remote Sensing Group, Department of Cartographic Engineering, Geodesy and Photogrammetry, Universitat Politècnica de València, València 46022, SpainCentro de Investigaciones del Medioambiente, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata 1900, ArgentinaGeo-Environmental Cartography and Remote Sensing Group, Department of Cartographic Engineering, Geodesy and Photogrammetry, Universitat Politècnica de València, València 46022, SpainFine particulate matter (PM<sub>2.5</sub>) is a global problem that affects the population health and contributes to climate change. Remote sensing provides useful information for the development of air quality models. This work aims to obtain a daily model of PM<sub>2.5</sub> levels in the Valencian Community with a resolution of 1 km for the period 2008&#8722;2018. MODIS-MAIAC images, meteorological parameters of the MERRA-2 project, land cover information and ground level measurements of PM<sub>2.5</sub> levels were analysed with Random Forest. The verification of the model was carried out using cross-validation repeated ten times, and an evaluation of a test set with 20% of the collected information. The final model was used to generate maps of the daily concentrations of PM<sub>2.5</sub> for the area of the Valencian Community throughout the study period.https://www.mdpi.com/2504-3900/19/1/13PM2.5LURRandom ForestMODISMERRA-2
collection DOAJ
language English
format Article
sources DOAJ
author Soledad Natacha Represa
Jesús Palomar-Vázquez
Andrés Porta
Alfonso Fernández-Sarría
spellingShingle Soledad Natacha Represa
Jesús Palomar-Vázquez
Andrés Porta
Alfonso Fernández-Sarría
Daily Concentrations of PM<sub>2.5</sub> in the Valencian Community Using Random Forest for the Period 2008–2018
Proceedings
PM2.5
LUR
Random Forest
MODIS
MERRA-2
author_facet Soledad Natacha Represa
Jesús Palomar-Vázquez
Andrés Porta
Alfonso Fernández-Sarría
author_sort Soledad Natacha Represa
title Daily Concentrations of PM<sub>2.5</sub> in the Valencian Community Using Random Forest for the Period 2008–2018
title_short Daily Concentrations of PM<sub>2.5</sub> in the Valencian Community Using Random Forest for the Period 2008–2018
title_full Daily Concentrations of PM<sub>2.5</sub> in the Valencian Community Using Random Forest for the Period 2008–2018
title_fullStr Daily Concentrations of PM<sub>2.5</sub> in the Valencian Community Using Random Forest for the Period 2008–2018
title_full_unstemmed Daily Concentrations of PM<sub>2.5</sub> in the Valencian Community Using Random Forest for the Period 2008–2018
title_sort daily concentrations of pm<sub>2.5</sub> in the valencian community using random forest for the period 2008–2018
publisher MDPI AG
series Proceedings
issn 2504-3900
publishDate 2019-07-01
description Fine particulate matter (PM<sub>2.5</sub>) is a global problem that affects the population health and contributes to climate change. Remote sensing provides useful information for the development of air quality models. This work aims to obtain a daily model of PM<sub>2.5</sub> levels in the Valencian Community with a resolution of 1 km for the period 2008&#8722;2018. MODIS-MAIAC images, meteorological parameters of the MERRA-2 project, land cover information and ground level measurements of PM<sub>2.5</sub> levels were analysed with Random Forest. The verification of the model was carried out using cross-validation repeated ten times, and an evaluation of a test set with 20% of the collected information. The final model was used to generate maps of the daily concentrations of PM<sub>2.5</sub> for the area of the Valencian Community throughout the study period.
topic PM2.5
LUR
Random Forest
MODIS
MERRA-2
url https://www.mdpi.com/2504-3900/19/1/13
work_keys_str_mv AT soledadnatacharepresa dailyconcentrationsofpmsub25subinthevalenciancommunityusingrandomforestfortheperiod20082018
AT jesuspalomarvazquez dailyconcentrationsofpmsub25subinthevalenciancommunityusingrandomforestfortheperiod20082018
AT andresporta dailyconcentrationsofpmsub25subinthevalenciancommunityusingrandomforestfortheperiod20082018
AT alfonsofernandezsarria dailyconcentrationsofpmsub25subinthevalenciancommunityusingrandomforestfortheperiod20082018
_version_ 1725988595091636224