Daily Concentrations of PM<sub>2.5</sub> in the Valencian Community Using Random Forest for the Period 2008–2018
Fine particulate matter (PM<sub>2.5</sub>) is a global problem that affects the population health and contributes to climate change. Remote sensing provides useful information for the development of air quality models. This work aims to obtain a daily model of PM<sub>2.5</sub>...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-07-01
|
Series: | Proceedings |
Subjects: | |
Online Access: | https://www.mdpi.com/2504-3900/19/1/13 |
id |
doaj-7108a7543d6f4f71bded9226698a7e1b |
---|---|
record_format |
Article |
spelling |
doaj-7108a7543d6f4f71bded9226698a7e1b2020-11-24T21:24:23ZengMDPI AGProceedings2504-39002019-07-011911310.3390/proceedings2019019013proceedings2019019013Daily Concentrations of PM<sub>2.5</sub> in the Valencian Community Using Random Forest for the Period 2008–2018Soledad Natacha Represa0Jesús Palomar-Vázquez1Andrés Porta2Alfonso Fernández-Sarría3Centro de Investigaciones del Medioambiente, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata 1900, ArgentinaGeo-Environmental Cartography and Remote Sensing Group, Department of Cartographic Engineering, Geodesy and Photogrammetry, Universitat Politècnica de València, València 46022, SpainCentro de Investigaciones del Medioambiente, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata 1900, ArgentinaGeo-Environmental Cartography and Remote Sensing Group, Department of Cartographic Engineering, Geodesy and Photogrammetry, Universitat Politècnica de València, València 46022, SpainFine particulate matter (PM<sub>2.5</sub>) is a global problem that affects the population health and contributes to climate change. Remote sensing provides useful information for the development of air quality models. This work aims to obtain a daily model of PM<sub>2.5</sub> levels in the Valencian Community with a resolution of 1 km for the period 2008−2018. MODIS-MAIAC images, meteorological parameters of the MERRA-2 project, land cover information and ground level measurements of PM<sub>2.5</sub> levels were analysed with Random Forest. The verification of the model was carried out using cross-validation repeated ten times, and an evaluation of a test set with 20% of the collected information. The final model was used to generate maps of the daily concentrations of PM<sub>2.5</sub> for the area of the Valencian Community throughout the study period.https://www.mdpi.com/2504-3900/19/1/13PM2.5LURRandom ForestMODISMERRA-2 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Soledad Natacha Represa Jesús Palomar-Vázquez Andrés Porta Alfonso Fernández-Sarría |
spellingShingle |
Soledad Natacha Represa Jesús Palomar-Vázquez Andrés Porta Alfonso Fernández-Sarría Daily Concentrations of PM<sub>2.5</sub> in the Valencian Community Using Random Forest for the Period 2008–2018 Proceedings PM2.5 LUR Random Forest MODIS MERRA-2 |
author_facet |
Soledad Natacha Represa Jesús Palomar-Vázquez Andrés Porta Alfonso Fernández-Sarría |
author_sort |
Soledad Natacha Represa |
title |
Daily Concentrations of PM<sub>2.5</sub> in the Valencian Community Using Random Forest for the Period 2008–2018 |
title_short |
Daily Concentrations of PM<sub>2.5</sub> in the Valencian Community Using Random Forest for the Period 2008–2018 |
title_full |
Daily Concentrations of PM<sub>2.5</sub> in the Valencian Community Using Random Forest for the Period 2008–2018 |
title_fullStr |
Daily Concentrations of PM<sub>2.5</sub> in the Valencian Community Using Random Forest for the Period 2008–2018 |
title_full_unstemmed |
Daily Concentrations of PM<sub>2.5</sub> in the Valencian Community Using Random Forest for the Period 2008–2018 |
title_sort |
daily concentrations of pm<sub>2.5</sub> in the valencian community using random forest for the period 2008–2018 |
publisher |
MDPI AG |
series |
Proceedings |
issn |
2504-3900 |
publishDate |
2019-07-01 |
description |
Fine particulate matter (PM<sub>2.5</sub>) is a global problem that affects the population health and contributes to climate change. Remote sensing provides useful information for the development of air quality models. This work aims to obtain a daily model of PM<sub>2.5</sub> levels in the Valencian Community with a resolution of 1 km for the period 2008−2018. MODIS-MAIAC images, meteorological parameters of the MERRA-2 project, land cover information and ground level measurements of PM<sub>2.5</sub> levels were analysed with Random Forest. The verification of the model was carried out using cross-validation repeated ten times, and an evaluation of a test set with 20% of the collected information. The final model was used to generate maps of the daily concentrations of PM<sub>2.5</sub> for the area of the Valencian Community throughout the study period. |
topic |
PM2.5 LUR Random Forest MODIS MERRA-2 |
url |
https://www.mdpi.com/2504-3900/19/1/13 |
work_keys_str_mv |
AT soledadnatacharepresa dailyconcentrationsofpmsub25subinthevalenciancommunityusingrandomforestfortheperiod20082018 AT jesuspalomarvazquez dailyconcentrationsofpmsub25subinthevalenciancommunityusingrandomforestfortheperiod20082018 AT andresporta dailyconcentrationsofpmsub25subinthevalenciancommunityusingrandomforestfortheperiod20082018 AT alfonsofernandezsarria dailyconcentrationsofpmsub25subinthevalenciancommunityusingrandomforestfortheperiod20082018 |
_version_ |
1725988595091636224 |