WATERLINE DETECTION AND MONITORING IN THE GERMAN WADDEN SEA USING HIGH RESOLUTION SATELLITE-BASED RADAR MEASUREMENTS

High resolution TerraSAR-X/TanDEM-X as well as Sentinel-1 remote sensing Synthetic Aperture Radar (SAR) data are used to determine and monitor the waterline in the Wadden Sea. In this very unique and dynamic coastal region in the southeastern North Sea, tidal flats extend several kilometers away fro...

Full description

Bibliographic Details
Main Authors: S. Wiehle, S. Lehner, A. Pleskachevsky
Format: Article
Language:English
Published: Copernicus Publications 2015-04-01
Series:The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Online Access:http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-7-W3/1029/2015/isprsarchives-XL-7-W3-1029-2015.pdf
Description
Summary:High resolution TerraSAR-X/TanDEM-X as well as Sentinel-1 remote sensing Synthetic Aperture Radar (SAR) data are used to determine and monitor the waterline in the Wadden Sea. In this very unique and dynamic coastal region in the southeastern North Sea, tidal flats extend several kilometers away from the coast during low tide with features like tidal inlets and sand banks. Under the influence of tidal water currents transporting large amounts of eroded material, inlets and sand banks move over time; heavy storms can even cause large variations in their extensions in merely a few hours. Observation of these obstacles is crucial for maritime security as high ship traffic is caused by the ports of Hamburg, Bremerhaven, Wilhelmshaven and others. Conventional monitoring campaigns with ships or airplanes are economically expensive and can only provide limited coverage. We present an automatic algorithm with Near Real-Time capability for extracting the waterline at the time of recording from SAR images, which allows for a fast and large scale determination of changes in coastal outlines. The comparison of recent acquisitions of TerraSAR-X and Sentinel-1 to bathymetry data of the Elbe estuary obtained in 2010 reveals significant changes in tidal flat structures.
ISSN:1682-1750
2194-9034