Tunable Goos–Hänchen Shift and Polarization Beam Splitting Through a Cavity Containing Double Ladder Energy Level System
The present paper theoretically demonstrates tunable Goos-Hänchen (GH) shift and beam splitting of the polarized light reflected from the cavity containing the double ladder energy level system. Simultaneously opposite GH shifts for left-circularly polarized (LCP) and right-circularly po...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2019-01-01
|
Series: | IEEE Photonics Journal |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/8648492/ |
Summary: | The present paper theoretically demonstrates tunable Goos-Hänchen (GH) shift and beam splitting of the polarized light reflected from the cavity containing the double ladder energy level system. Simultaneously opposite GH shifts for left-circularly polarized (LCP) and right-circularly polarized (RCP) beams can be achieved under asymmetric field conditions. By adjusting the intensity (Rabi frequency) of probe or drive field, the GH shifts of LCP and RCP probe beams are manipulated at the same time. We also discuss the effects of probe field frequency detuning on GH shifts and identify the parameters region to obtain a large separate distance (~320 μm) between LCP and RCP probe beams. |
---|---|
ISSN: | 1943-0655 |