Summary: | Abstract Background The application of nanofertilisers in agriculture has been widely utilised due to their distinct characteristics and negative impacts of conventional chemical fertilisers. This study thus examined the influence of calcium nanoparticles (CaNPs) on soil composition vis-à-vis performance parameters in Moringa oleifera L exposed to water, 100 mg Ca(NO3)2kg−1 soil and 100, 75 and 50 mg CaNPs kg−1 soil. Soil morphology was determined with a scanning electron microscope coupled with energy dispersive x-ray (SEM-EDX) and elemental composition in both soils and M. oleifera roots determined with inductively coupled plasma-optical emission spectrometer (ICP-OES). Results The CaNP-amended soils were more crystalline, more fertile and had reduced salinity. An increase in immobilisation percentage of heavy metals, improvement in physiological parameters (percentage germination, vigour indices, relative water contents, lengths of roots and shoots) and photosynthetic efficiency in M. oleifera were recorded. Conclusion This study has demonstrated that CaNPs could improve soil composition for better plant performance and can act as nanofertilisers mobilising essential nutrients. Graphical abstract
|