The q-Higgs and Askey–Wilson algebras
A q-analogue of the Higgs algebra, which describes the symmetry properties of the harmonic oscillator on the 2-sphere, is obtained as the commutant of the oq1/2(2)⊕oq1/2(2) subalgebra of oq1/2(4) in the q-oscillator representation of the quantized universal enveloping algebra Uq(u(4)). This q-Higgs...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2019-07-01
|
Series: | Nuclear Physics B |
Online Access: | http://www.sciencedirect.com/science/article/pii/S055032131930118X |
id |
doaj-708bd660de324138a6ae11a755f13edd |
---|---|
record_format |
Article |
spelling |
doaj-708bd660de324138a6ae11a755f13edd2020-11-24T21:44:31ZengElsevierNuclear Physics B0550-32132019-07-01944The q-Higgs and Askey–Wilson algebrasLuc Frappat0Julien Gaboriaud1Eric Ragoucy2Luc Vinet3Laboratoire d'Annecy-le-Vieux de Physique Théorique LAPTh, BP 110 Annecy-le-Vieux, F-74941 Annecy Cedex, France; Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, F-74000 Annecy, FranceCentre de Recherches Mathématiques, Université de Montréal, P.O. Box 6128, Centre-ville Station, Montréal (Québec), H3C 3J7, Canada; Corresponding author.Laboratoire d'Annecy-le-Vieux de Physique Théorique LAPTh, BP 110 Annecy-le-Vieux, F-74941 Annecy Cedex, France; Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, F-74000 Annecy, FranceCentre de Recherches Mathématiques, Université de Montréal, P.O. Box 6128, Centre-ville Station, Montréal (Québec), H3C 3J7, CanadaA q-analogue of the Higgs algebra, which describes the symmetry properties of the harmonic oscillator on the 2-sphere, is obtained as the commutant of the oq1/2(2)⊕oq1/2(2) subalgebra of oq1/2(4) in the q-oscillator representation of the quantized universal enveloping algebra Uq(u(4)). This q-Higgs algebra is also found as a specialization of the Askey–Wilson algebra embedded in the tensor product Uq(su(1,1))⊗Uq(su(1,1)). The connection between these two approaches is established on the basis of the Howe duality of the pair (oq1/2(4),Uq(su(1,1))).http://www.sciencedirect.com/science/article/pii/S055032131930118X |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Luc Frappat Julien Gaboriaud Eric Ragoucy Luc Vinet |
spellingShingle |
Luc Frappat Julien Gaboriaud Eric Ragoucy Luc Vinet The q-Higgs and Askey–Wilson algebras Nuclear Physics B |
author_facet |
Luc Frappat Julien Gaboriaud Eric Ragoucy Luc Vinet |
author_sort |
Luc Frappat |
title |
The q-Higgs and Askey–Wilson algebras |
title_short |
The q-Higgs and Askey–Wilson algebras |
title_full |
The q-Higgs and Askey–Wilson algebras |
title_fullStr |
The q-Higgs and Askey–Wilson algebras |
title_full_unstemmed |
The q-Higgs and Askey–Wilson algebras |
title_sort |
q-higgs and askey–wilson algebras |
publisher |
Elsevier |
series |
Nuclear Physics B |
issn |
0550-3213 |
publishDate |
2019-07-01 |
description |
A q-analogue of the Higgs algebra, which describes the symmetry properties of the harmonic oscillator on the 2-sphere, is obtained as the commutant of the oq1/2(2)⊕oq1/2(2) subalgebra of oq1/2(4) in the q-oscillator representation of the quantized universal enveloping algebra Uq(u(4)). This q-Higgs algebra is also found as a specialization of the Askey–Wilson algebra embedded in the tensor product Uq(su(1,1))⊗Uq(su(1,1)). The connection between these two approaches is established on the basis of the Howe duality of the pair (oq1/2(4),Uq(su(1,1))). |
url |
http://www.sciencedirect.com/science/article/pii/S055032131930118X |
work_keys_str_mv |
AT lucfrappat theqhiggsandaskeywilsonalgebras AT juliengaboriaud theqhiggsandaskeywilsonalgebras AT ericragoucy theqhiggsandaskeywilsonalgebras AT lucvinet theqhiggsandaskeywilsonalgebras AT lucfrappat qhiggsandaskeywilsonalgebras AT juliengaboriaud qhiggsandaskeywilsonalgebras AT ericragoucy qhiggsandaskeywilsonalgebras AT lucvinet qhiggsandaskeywilsonalgebras |
_version_ |
1725909748369326080 |