The q-Higgs and Askey–Wilson algebras

A q-analogue of the Higgs algebra, which describes the symmetry properties of the harmonic oscillator on the 2-sphere, is obtained as the commutant of the oq1/2(2)⊕oq1/2(2) subalgebra of oq1/2(4) in the q-oscillator representation of the quantized universal enveloping algebra Uq(u(4)). This q-Higgs...

Full description

Bibliographic Details
Main Authors: Luc Frappat, Julien Gaboriaud, Eric Ragoucy, Luc Vinet
Format: Article
Language:English
Published: Elsevier 2019-07-01
Series:Nuclear Physics B
Online Access:http://www.sciencedirect.com/science/article/pii/S055032131930118X
id doaj-708bd660de324138a6ae11a755f13edd
record_format Article
spelling doaj-708bd660de324138a6ae11a755f13edd2020-11-24T21:44:31ZengElsevierNuclear Physics B0550-32132019-07-01944The q-Higgs and Askey–Wilson algebrasLuc Frappat0Julien Gaboriaud1Eric Ragoucy2Luc Vinet3Laboratoire d'Annecy-le-Vieux de Physique Théorique LAPTh, BP 110 Annecy-le-Vieux, F-74941 Annecy Cedex, France; Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, F-74000 Annecy, FranceCentre de Recherches Mathématiques, Université de Montréal, P.O. Box 6128, Centre-ville Station, Montréal (Québec), H3C 3J7, Canada; Corresponding author.Laboratoire d'Annecy-le-Vieux de Physique Théorique LAPTh, BP 110 Annecy-le-Vieux, F-74941 Annecy Cedex, France; Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, F-74000 Annecy, FranceCentre de Recherches Mathématiques, Université de Montréal, P.O. Box 6128, Centre-ville Station, Montréal (Québec), H3C 3J7, CanadaA q-analogue of the Higgs algebra, which describes the symmetry properties of the harmonic oscillator on the 2-sphere, is obtained as the commutant of the oq1/2(2)⊕oq1/2(2) subalgebra of oq1/2(4) in the q-oscillator representation of the quantized universal enveloping algebra Uq(u(4)). This q-Higgs algebra is also found as a specialization of the Askey–Wilson algebra embedded in the tensor product Uq(su(1,1))⊗Uq(su(1,1)). The connection between these two approaches is established on the basis of the Howe duality of the pair (oq1/2(4),Uq(su(1,1))).http://www.sciencedirect.com/science/article/pii/S055032131930118X
collection DOAJ
language English
format Article
sources DOAJ
author Luc Frappat
Julien Gaboriaud
Eric Ragoucy
Luc Vinet
spellingShingle Luc Frappat
Julien Gaboriaud
Eric Ragoucy
Luc Vinet
The q-Higgs and Askey–Wilson algebras
Nuclear Physics B
author_facet Luc Frappat
Julien Gaboriaud
Eric Ragoucy
Luc Vinet
author_sort Luc Frappat
title The q-Higgs and Askey–Wilson algebras
title_short The q-Higgs and Askey–Wilson algebras
title_full The q-Higgs and Askey–Wilson algebras
title_fullStr The q-Higgs and Askey–Wilson algebras
title_full_unstemmed The q-Higgs and Askey–Wilson algebras
title_sort q-higgs and askey–wilson algebras
publisher Elsevier
series Nuclear Physics B
issn 0550-3213
publishDate 2019-07-01
description A q-analogue of the Higgs algebra, which describes the symmetry properties of the harmonic oscillator on the 2-sphere, is obtained as the commutant of the oq1/2(2)⊕oq1/2(2) subalgebra of oq1/2(4) in the q-oscillator representation of the quantized universal enveloping algebra Uq(u(4)). This q-Higgs algebra is also found as a specialization of the Askey–Wilson algebra embedded in the tensor product Uq(su(1,1))⊗Uq(su(1,1)). The connection between these two approaches is established on the basis of the Howe duality of the pair (oq1/2(4),Uq(su(1,1))).
url http://www.sciencedirect.com/science/article/pii/S055032131930118X
work_keys_str_mv AT lucfrappat theqhiggsandaskeywilsonalgebras
AT juliengaboriaud theqhiggsandaskeywilsonalgebras
AT ericragoucy theqhiggsandaskeywilsonalgebras
AT lucvinet theqhiggsandaskeywilsonalgebras
AT lucfrappat qhiggsandaskeywilsonalgebras
AT juliengaboriaud qhiggsandaskeywilsonalgebras
AT ericragoucy qhiggsandaskeywilsonalgebras
AT lucvinet qhiggsandaskeywilsonalgebras
_version_ 1725909748369326080