Vector Weighting Approach and Vector Space Decoupling Transform in a Novel SVPWM Algorithm for Six-Phase Voltage Source Inverter

For six-phase permanent-magnet synchronous motor (PMSM) which has two sets of Y-connected three-phase windings spatially phase shifted by 30 electrical degrees, to increase the utilization ratio of the DC bus voltage, a novel space vector pulse width modulation (SVPWM) algorithm in full modulation r...

Full description

Bibliographic Details
Main Authors: Peng Wu, Lei Yuan, Zhen Zuo, Junyu Wei
Format: Article
Language:English
Published: Hindawi Limited 2019-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2019/8729125
Description
Summary:For six-phase permanent-magnet synchronous motor (PMSM) which has two sets of Y-connected three-phase windings spatially phase shifted by 30 electrical degrees, to increase the utilization ratio of the DC bus voltage, a novel space vector pulse width modulation (SVPWM) algorithm in full modulation range capability based on vector weighted method is proposed in this paper. The basic vector action time of SVPWM method is derived in detail, employing vector space decomposition transformation approach. Compared with the previous algorithm, this strategy is able to overcome the inherent shortcomings of the four-vector SVPWM, and it achieves smooth transitions from linear to overmodulation region. Simulation and experimental analyses demonstrate the effectiveness and feasibility of the proposed strategy.
ISSN:1024-123X
1563-5147