Sequential inversion of GOCE satellite gravity gradient data and terrestrial gravity data for the lithospheric density structure in the North China Craton

<p>The North China Craton (NCC) is one of the oldest cratons in the world. Currently, the destruction mechanism and geodynamics of the NCC remain controversial. All of the proposed views regarding the issues involve studying the internal density structure of the NCC lithosphere. Gravity field...

Full description

Bibliographic Details
Main Authors: Y. Tian, Y. Wang
Format: Article
Language:English
Published: Copernicus Publications 2020-07-01
Series:Solid Earth
Online Access:https://se.copernicus.org/articles/11/1121/2020/se-11-1121-2020.pdf
Description
Summary:<p>The North China Craton (NCC) is one of the oldest cratons in the world. Currently, the destruction mechanism and geodynamics of the NCC remain controversial. All of the proposed views regarding the issues involve studying the internal density structure of the NCC lithosphere. Gravity field data are among the most important data in regard to investigating the lithospheric density structure, and gravity gradient data and gravity data each possess their own advantages.</p> <p>Given the different observational plane heights between the on-orbit GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) satellite gravity gradient and terrestrial gravity and the effects of the initial density model on the inversion results, sequential inversion of the gravity gradient and gravity are divided into two integrated processes. By using the preconditioned conjugate gradient (PCG) inversion algorithm, the density data are calculated using the preprocessed corrected gravity anomaly data. Then, the newly obtained high-resolution density data are used as the initial density model, which can serve as constraints for the subsequent gravity gradient inversion. Several essential corrections are applied to the four gravity gradient tensors (<span class="inline-formula"><strong><em>T</em></strong><sub><i>x</i><i>x</i></sub></span>, <span class="inline-formula"><strong><em>T</em></strong><sub><i>x</i><i>z</i></sub></span>, <span class="inline-formula"><strong><em>T</em></strong><sub><i>y</i><i>y</i></sub></span>, <span class="inline-formula"><strong><em>T</em></strong><sub><i>z</i><i>z</i></sub></span>) of the GOCE satellite, after which the corrected gravity gradient anomalies (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><msup><mi mathvariant="bold-italic">T</mi><mo>′</mo></msup><mrow><mi>x</mi><mi>x</mi></mrow></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="21pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="2db9f123c0c472add4ea2a2f6eadd4b9"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="se-11-1121-2020-ie00001.svg" width="21pt" height="14pt" src="se-11-1121-2020-ie00001.png"/></svg:svg></span></span>, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><msup><mi mathvariant="bold-italic">T</mi><mo>′</mo></msup><mrow><mi>x</mi><mi>z</mi></mrow></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="21pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="3390584603048d2d115b45f1db4c6d1b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="se-11-1121-2020-ie00002.svg" width="21pt" height="14pt" src="se-11-1121-2020-ie00002.png"/></svg:svg></span></span>, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><msup><mi mathvariant="bold-italic">T</mi><mo>′</mo></msup><mrow><mi>y</mi><mi>y</mi></mrow></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="21pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="2c884bfa93d81f79c230c3ce129776c5"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="se-11-1121-2020-ie00003.svg" width="21pt" height="15pt" src="se-11-1121-2020-ie00003.png"/></svg:svg></span></span>, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><msup><mi mathvariant="bold-italic">T</mi><mo>′</mo></msup><mrow><mi>z</mi><mi>z</mi></mrow></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="20pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="2af3aa5cd5a58ace11c7bf69e624f013"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="se-11-1121-2020-ie00004.svg" width="20pt" height="14pt" src="se-11-1121-2020-ie00004.png"/></svg:svg></span></span>) are used as observations. The lithospheric density distribution result within the depth range of 0–180&thinsp;km in the NCC is obtained.</p> <p>This study clearly illustrates that GOCE data are helpful in understanding the geological settings and tectonic structures in the NCC with regional scale. The inversion results show that in the crust the eastern NCC is affected by lithospheric thinning with obvious local features. In the mantle, the presented obvious negative-density areas are mainly affected by the high-heat-flux environment. In the eastern NCC, the density anomaly in the Bohai Bay area is mostly attributed to the extension of the Tancheng–Lujiang major fault at the eastern boundary. In the western NCC, the crustal density anomaly distribution of the Qilian block is consistent with the northwest–southeast strike of the surface fault belt, whereas such an anomaly distribution experiences a clockwise rotation to a nearly north–south direction upon entering the mantle.</p>
ISSN:1869-9510
1869-9529