Lie commutators in a free diassociative algebra
We give a criterion for Leibniz elements in a free diassociative algebra. In the diassociative case one can consider two versions of Lie commutators. We give criterions for elements of diassociative algebras to be Lie under these commutators. One of them corresponds to Leibniz elements. It generaliz...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Sciendo
2020-09-01
|
Series: | Communications in Mathematics |
Subjects: | |
Online Access: | https://doi.org/10.2478/cm-2020-0017 |
id |
doaj-703fdf5b963e4a54836fe31a008f2ca1 |
---|---|
record_format |
Article |
spelling |
doaj-703fdf5b963e4a54836fe31a008f2ca12021-09-06T19:22:06ZengSciendoCommunications in Mathematics2336-12982020-09-0128215516010.2478/cm-2020-0017cm-2020-0017Lie commutators in a free diassociative algebraDzhumadil’daev A.S.0Ismailov N.A.1Orazgaliyev A.T.2Al-Farabi Kazakh National University, Almaty, Kazakhstan and Saint Petersburg State University, Saint Petersburg, RussiaAstana IT University, Nur-Sultan, Kazakhstan and Saint Petersburg State University, Saint Petersburg, RussiaInstitute of Mathematics and Mathematical Modeling, Almaty, KazakhstanWe give a criterion for Leibniz elements in a free diassociative algebra. In the diassociative case one can consider two versions of Lie commutators. We give criterions for elements of diassociative algebras to be Lie under these commutators. One of them corresponds to Leibniz elements. It generalizes the Dynkin-Specht-Wever criterion for Lie elements in a free associative algebra.https://doi.org/10.2478/cm-2020-0017diassociative algebarsleibniz elementsdynkin-specht-wever criterion17a3017a50 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Dzhumadil’daev A.S. Ismailov N.A. Orazgaliyev A.T. |
spellingShingle |
Dzhumadil’daev A.S. Ismailov N.A. Orazgaliyev A.T. Lie commutators in a free diassociative algebra Communications in Mathematics diassociative algebars leibniz elements dynkin-specht-wever criterion 17a30 17a50 |
author_facet |
Dzhumadil’daev A.S. Ismailov N.A. Orazgaliyev A.T. |
author_sort |
Dzhumadil’daev A.S. |
title |
Lie commutators in a free diassociative algebra |
title_short |
Lie commutators in a free diassociative algebra |
title_full |
Lie commutators in a free diassociative algebra |
title_fullStr |
Lie commutators in a free diassociative algebra |
title_full_unstemmed |
Lie commutators in a free diassociative algebra |
title_sort |
lie commutators in a free diassociative algebra |
publisher |
Sciendo |
series |
Communications in Mathematics |
issn |
2336-1298 |
publishDate |
2020-09-01 |
description |
We give a criterion for Leibniz elements in a free diassociative algebra. In the diassociative case one can consider two versions of Lie commutators. We give criterions for elements of diassociative algebras to be Lie under these commutators. One of them corresponds to Leibniz elements. It generalizes the Dynkin-Specht-Wever criterion for Lie elements in a free associative algebra. |
topic |
diassociative algebars leibniz elements dynkin-specht-wever criterion 17a30 17a50 |
url |
https://doi.org/10.2478/cm-2020-0017 |
work_keys_str_mv |
AT dzhumadildaevas liecommutatorsinafreediassociativealgebra AT ismailovna liecommutatorsinafreediassociativealgebra AT orazgaliyevat liecommutatorsinafreediassociativealgebra |
_version_ |
1717772688230973440 |