Lie commutators in a free diassociative algebra

We give a criterion for Leibniz elements in a free diassociative algebra. In the diassociative case one can consider two versions of Lie commutators. We give criterions for elements of diassociative algebras to be Lie under these commutators. One of them corresponds to Leibniz elements. It generaliz...

Full description

Bibliographic Details
Main Authors: Dzhumadil’daev A.S., Ismailov N.A., Orazgaliyev A.T.
Format: Article
Language:English
Published: Sciendo 2020-09-01
Series:Communications in Mathematics
Subjects:
Online Access:https://doi.org/10.2478/cm-2020-0017
id doaj-703fdf5b963e4a54836fe31a008f2ca1
record_format Article
spelling doaj-703fdf5b963e4a54836fe31a008f2ca12021-09-06T19:22:06ZengSciendoCommunications in Mathematics2336-12982020-09-0128215516010.2478/cm-2020-0017cm-2020-0017Lie commutators in a free diassociative algebraDzhumadil’daev A.S.0Ismailov N.A.1Orazgaliyev A.T.2Al-Farabi Kazakh National University, Almaty, Kazakhstan and Saint Petersburg State University, Saint Petersburg, RussiaAstana IT University, Nur-Sultan, Kazakhstan and Saint Petersburg State University, Saint Petersburg, RussiaInstitute of Mathematics and Mathematical Modeling, Almaty, KazakhstanWe give a criterion for Leibniz elements in a free diassociative algebra. In the diassociative case one can consider two versions of Lie commutators. We give criterions for elements of diassociative algebras to be Lie under these commutators. One of them corresponds to Leibniz elements. It generalizes the Dynkin-Specht-Wever criterion for Lie elements in a free associative algebra.https://doi.org/10.2478/cm-2020-0017diassociative algebarsleibniz elementsdynkin-specht-wever criterion17a3017a50
collection DOAJ
language English
format Article
sources DOAJ
author Dzhumadil’daev A.S.
Ismailov N.A.
Orazgaliyev A.T.
spellingShingle Dzhumadil’daev A.S.
Ismailov N.A.
Orazgaliyev A.T.
Lie commutators in a free diassociative algebra
Communications in Mathematics
diassociative algebars
leibniz elements
dynkin-specht-wever criterion
17a30
17a50
author_facet Dzhumadil’daev A.S.
Ismailov N.A.
Orazgaliyev A.T.
author_sort Dzhumadil’daev A.S.
title Lie commutators in a free diassociative algebra
title_short Lie commutators in a free diassociative algebra
title_full Lie commutators in a free diassociative algebra
title_fullStr Lie commutators in a free diassociative algebra
title_full_unstemmed Lie commutators in a free diassociative algebra
title_sort lie commutators in a free diassociative algebra
publisher Sciendo
series Communications in Mathematics
issn 2336-1298
publishDate 2020-09-01
description We give a criterion for Leibniz elements in a free diassociative algebra. In the diassociative case one can consider two versions of Lie commutators. We give criterions for elements of diassociative algebras to be Lie under these commutators. One of them corresponds to Leibniz elements. It generalizes the Dynkin-Specht-Wever criterion for Lie elements in a free associative algebra.
topic diassociative algebars
leibniz elements
dynkin-specht-wever criterion
17a30
17a50
url https://doi.org/10.2478/cm-2020-0017
work_keys_str_mv AT dzhumadildaevas liecommutatorsinafreediassociativealgebra
AT ismailovna liecommutatorsinafreediassociativealgebra
AT orazgaliyevat liecommutatorsinafreediassociativealgebra
_version_ 1717772688230973440