Retrieving Doppler Frequency via Local Correlation Method of Segmented Modeling
The high accuracy radio Doppler frequency is critical for navigating a deep space probe and for planetary radio science experiments. In this paper, we propose a novel method based on the local correlation of segmented modeling to retrieve Doppler frequency by processing an open-loop radio link signa...
Main Authors: | , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-07-01
|
Series: | Remote Sensing |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-4292/13/14/2846 |
Summary: | The high accuracy radio Doppler frequency is critical for navigating a deep space probe and for planetary radio science experiments. In this paper, we propose a novel method based on the local correlation of segmented modeling to retrieve Doppler frequency by processing an open-loop radio link signal from one single ground station. Simulations are implemented, which prove the validity of this method. Mars Express (MEX) and Tianwen-1 observation experiments were carried out by Chinese Deep Space Stations (CDSS). X-band Doppler frequency observables were retrieved by the proposed method to participate in orbit determination. The results show that the accuracy of velocity residuals of orbit determination in open-loop mode is from 0.043 mm/s to 0.061 mm/s in 1 s integration; the average accuracy of Doppler frequency is about 3.3 mHz in 1 s integration and about 0.73 mHz in 60 s integration. The Doppler accuracy here is better than that of the digital baseband receiver at CDSS. The algorithm is efficient and flexible when the deep space probe is in a high dynamic mode and in low signal to noise ratio (SNR). This will benefit Chinese deep space exploration missions and planetary radio science experiments. |
---|---|
ISSN: | 2072-4292 |