A Universal Trajectory Planning Method for Automated Lane-Changing and Overtaking Maneuvers

Lane-changing and overtaking are conventional maneuvers on roads, and the reference trajectory is one of the prerequisites to execute these maneuvers. This study proposes a universal trajectory planning method for automated lane-changing and overtaking maneuvers, in which the trajectory is regarded...

Full description

Bibliographic Details
Main Authors: Ying Wang, Chong Wei
Format: Article
Language:English
Published: Hindawi Limited 2020-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2020/1023975
Description
Summary:Lane-changing and overtaking are conventional maneuvers on roads, and the reference trajectory is one of the prerequisites to execute these maneuvers. This study proposes a universal trajectory planning method for automated lane-changing and overtaking maneuvers, in which the trajectory is regarded as the combination of a path and its traffic state profiles. The two-dimensional path is represented by a suitable curve to connect the initial position with final position of the ego vehicle. Based on the planned path, its traffic state profiles are generated by solving a nonlinear mathematical optimization model. Moreover, the study discretizes the time horizon into several time intervals and determines the parameters to obtain the continuous and smooth profiles, which guarantees the safety and comfort of the ego vehicle. Finally, a series of simulation experiments are performed in the MATLAB platform and the results show the feasibility and effectiveness of the proposed universal trajectory planning method.
ISSN:1024-123X
1563-5147