Enhancing mechanical properties of ceramic papers loaded with zeolites using borate compounds as binders

NaY zeolite-containing ceramic papers were prepared by a papermaking technique with a dual polyelectrolyte retention system that implied the use of cationic and anionic polymers. To improve their mechanical properties, we found that some borate compounds could be successfully used as ceramic binders...

Full description

Bibliographic Details
Main Authors: Juan P. Cecchini, Ramiro M. Serra, María A. Ulla, Miguel A. Zanuttini, Viviana G. Milt
Format: Article
Language:English
Published: North Carolina State University 2013-02-01
Series:BioResources
Subjects:
Online Access:http://www.ncsu.edu/bioresources/BioRes_08/BioRes_08_1_0313_Cecchini_SUZM_Ceramic_Papers_Zeolites_Borate_Binders_3196.pdf
Description
Summary:NaY zeolite-containing ceramic papers were prepared by a papermaking technique with a dual polyelectrolyte retention system that implied the use of cationic and anionic polymers. To improve their mechanical properties, we found that some borate compounds could be successfully used as ceramic binders. Three types of sodium and/or calcium borates were tested as binders: colemanite, nobleite, and anhydrous ulexite. The improvement in the mechanical properties depends both on the borate used and on the calcination temperature. By XRD it was determined that the faujasite structure collapsed after calcination at 700°C, which limited the final calcination temperature of zeolitic ceramic papers. Different amounts of NaY zeolite were added to ceramic papers and, as observed by SEM, faujasite particles were well distributed throughout the ceramic paper structure. Ceramic papers containing 1.2 wt.% zeolite after calcination at 650°C resulted in structured catalysts that were easy-to-handle, and which can be adapted to different conformations.
ISSN:1930-2126