High-Order Energy and Linear Momentum Conserving Methods for the Klein-Gordon Equation

The Klein-Gordon equation is a model for free particle wave function in relativistic quantum mechanics. Many numerical methods have been proposed to solve the Klein-Gordon equation. However, efficient high-order numerical methods that preserve energy and linear momentum of the equation have not been...

Full description

Bibliographic Details
Main Author: He Yang
Format: Article
Language:English
Published: MDPI AG 2018-10-01
Series:Mathematics
Subjects:
Online Access:http://www.mdpi.com/2227-7390/6/10/200
Description
Summary:The Klein-Gordon equation is a model for free particle wave function in relativistic quantum mechanics. Many numerical methods have been proposed to solve the Klein-Gordon equation. However, efficient high-order numerical methods that preserve energy and linear momentum of the equation have not been considered. In this paper, we propose high-order numerical methods to solve the Klein-Gordon equation, present the energy and linear momentum conservation properties of our numerical schemes, and show the optimal error estimates and superconvergence property. We also verify the performance of our numerical schemes by some numerical examples.
ISSN:2227-7390