Optimal Inequalities for Generalized Logarithmic, Arithmetic, and Geometric Means

<p/> <p>For <inline-formula> <graphic file="1029-242X-2010-806825-i1.gif"/></inline-formula>, the generalized logarithmic mean <inline-formula> <graphic file="1029-242X-2010-806825-i2.gif"/></inline-formula>, arithmetic mean <inl...

Full description

Bibliographic Details
Main Authors: Chu Yu-Ming, Long Bo-Yong
Format: Article
Language:English
Published: SpringerOpen 2010-01-01
Series:Journal of Inequalities and Applications
Online Access:http://www.journalofinequalitiesandapplications.com/content/2010/806825
id doaj-6ffe91b6ce3c4eb98fa64c13228edcb5
record_format Article
spelling doaj-6ffe91b6ce3c4eb98fa64c13228edcb52020-11-25T01:41:57ZengSpringerOpenJournal of Inequalities and Applications1025-58341029-242X2010-01-0120101806825Optimal Inequalities for Generalized Logarithmic, Arithmetic, and Geometric MeansChu Yu-MingLong Bo-Yong<p/> <p>For <inline-formula> <graphic file="1029-242X-2010-806825-i1.gif"/></inline-formula>, the generalized logarithmic mean <inline-formula> <graphic file="1029-242X-2010-806825-i2.gif"/></inline-formula>, arithmetic mean <inline-formula> <graphic file="1029-242X-2010-806825-i3.gif"/></inline-formula>, and geometric mean <inline-formula> <graphic file="1029-242X-2010-806825-i4.gif"/></inline-formula> of two positive numbers <inline-formula> <graphic file="1029-242X-2010-806825-i5.gif"/></inline-formula> and <inline-formula> <graphic file="1029-242X-2010-806825-i6.gif"/></inline-formula> are defined by <inline-formula> <graphic file="1029-242X-2010-806825-i7.gif"/></inline-formula>, for <inline-formula> <graphic file="1029-242X-2010-806825-i8.gif"/></inline-formula>, <inline-formula> <graphic file="1029-242X-2010-806825-i9.gif"/></inline-formula>, for <inline-formula> <graphic file="1029-242X-2010-806825-i10.gif"/></inline-formula>, <inline-formula> <graphic file="1029-242X-2010-806825-i11.gif"/></inline-formula>, and <inline-formula> <graphic file="1029-242X-2010-806825-i12.gif"/></inline-formula>, <inline-formula> <graphic file="1029-242X-2010-806825-i13.gif"/></inline-formula>, for <inline-formula> <graphic file="1029-242X-2010-806825-i14.gif"/></inline-formula>, and <inline-formula> <graphic file="1029-242X-2010-806825-i15.gif"/></inline-formula>, <inline-formula> <graphic file="1029-242X-2010-806825-i16.gif"/></inline-formula>, for <inline-formula> <graphic file="1029-242X-2010-806825-i17.gif"/></inline-formula>, and <inline-formula> <graphic file="1029-242X-2010-806825-i18.gif"/></inline-formula>, <inline-formula> <graphic file="1029-242X-2010-806825-i19.gif"/></inline-formula>, and <inline-formula> <graphic file="1029-242X-2010-806825-i20.gif"/></inline-formula>, respectively. In this paper, we find the greatest value <inline-formula> <graphic file="1029-242X-2010-806825-i21.gif"/></inline-formula> (or least value <inline-formula> <graphic file="1029-242X-2010-806825-i22.gif"/></inline-formula>, resp.) such that the inequality <inline-formula> <graphic file="1029-242X-2010-806825-i23.gif"/></inline-formula> (or <inline-formula> <graphic file="1029-242X-2010-806825-i24.gif"/></inline-formula>, resp.) holds for <inline-formula> <graphic file="1029-242X-2010-806825-i25.gif"/></inline-formula>(or <inline-formula> <graphic file="1029-242X-2010-806825-i26.gif"/></inline-formula>, resp.) and all <inline-formula> <graphic file="1029-242X-2010-806825-i27.gif"/></inline-formula> with <inline-formula> <graphic file="1029-242X-2010-806825-i28.gif"/></inline-formula>.</p>http://www.journalofinequalitiesandapplications.com/content/2010/806825
collection DOAJ
language English
format Article
sources DOAJ
author Chu Yu-Ming
Long Bo-Yong
spellingShingle Chu Yu-Ming
Long Bo-Yong
Optimal Inequalities for Generalized Logarithmic, Arithmetic, and Geometric Means
Journal of Inequalities and Applications
author_facet Chu Yu-Ming
Long Bo-Yong
author_sort Chu Yu-Ming
title Optimal Inequalities for Generalized Logarithmic, Arithmetic, and Geometric Means
title_short Optimal Inequalities for Generalized Logarithmic, Arithmetic, and Geometric Means
title_full Optimal Inequalities for Generalized Logarithmic, Arithmetic, and Geometric Means
title_fullStr Optimal Inequalities for Generalized Logarithmic, Arithmetic, and Geometric Means
title_full_unstemmed Optimal Inequalities for Generalized Logarithmic, Arithmetic, and Geometric Means
title_sort optimal inequalities for generalized logarithmic, arithmetic, and geometric means
publisher SpringerOpen
series Journal of Inequalities and Applications
issn 1025-5834
1029-242X
publishDate 2010-01-01
description <p/> <p>For <inline-formula> <graphic file="1029-242X-2010-806825-i1.gif"/></inline-formula>, the generalized logarithmic mean <inline-formula> <graphic file="1029-242X-2010-806825-i2.gif"/></inline-formula>, arithmetic mean <inline-formula> <graphic file="1029-242X-2010-806825-i3.gif"/></inline-formula>, and geometric mean <inline-formula> <graphic file="1029-242X-2010-806825-i4.gif"/></inline-formula> of two positive numbers <inline-formula> <graphic file="1029-242X-2010-806825-i5.gif"/></inline-formula> and <inline-formula> <graphic file="1029-242X-2010-806825-i6.gif"/></inline-formula> are defined by <inline-formula> <graphic file="1029-242X-2010-806825-i7.gif"/></inline-formula>, for <inline-formula> <graphic file="1029-242X-2010-806825-i8.gif"/></inline-formula>, <inline-formula> <graphic file="1029-242X-2010-806825-i9.gif"/></inline-formula>, for <inline-formula> <graphic file="1029-242X-2010-806825-i10.gif"/></inline-formula>, <inline-formula> <graphic file="1029-242X-2010-806825-i11.gif"/></inline-formula>, and <inline-formula> <graphic file="1029-242X-2010-806825-i12.gif"/></inline-formula>, <inline-formula> <graphic file="1029-242X-2010-806825-i13.gif"/></inline-formula>, for <inline-formula> <graphic file="1029-242X-2010-806825-i14.gif"/></inline-formula>, and <inline-formula> <graphic file="1029-242X-2010-806825-i15.gif"/></inline-formula>, <inline-formula> <graphic file="1029-242X-2010-806825-i16.gif"/></inline-formula>, for <inline-formula> <graphic file="1029-242X-2010-806825-i17.gif"/></inline-formula>, and <inline-formula> <graphic file="1029-242X-2010-806825-i18.gif"/></inline-formula>, <inline-formula> <graphic file="1029-242X-2010-806825-i19.gif"/></inline-formula>, and <inline-formula> <graphic file="1029-242X-2010-806825-i20.gif"/></inline-formula>, respectively. In this paper, we find the greatest value <inline-formula> <graphic file="1029-242X-2010-806825-i21.gif"/></inline-formula> (or least value <inline-formula> <graphic file="1029-242X-2010-806825-i22.gif"/></inline-formula>, resp.) such that the inequality <inline-formula> <graphic file="1029-242X-2010-806825-i23.gif"/></inline-formula> (or <inline-formula> <graphic file="1029-242X-2010-806825-i24.gif"/></inline-formula>, resp.) holds for <inline-formula> <graphic file="1029-242X-2010-806825-i25.gif"/></inline-formula>(or <inline-formula> <graphic file="1029-242X-2010-806825-i26.gif"/></inline-formula>, resp.) and all <inline-formula> <graphic file="1029-242X-2010-806825-i27.gif"/></inline-formula> with <inline-formula> <graphic file="1029-242X-2010-806825-i28.gif"/></inline-formula>.</p>
url http://www.journalofinequalitiesandapplications.com/content/2010/806825
work_keys_str_mv AT chuyuming optimalinequalitiesforgeneralizedlogarithmicarithmeticandgeometricmeans
AT longboyong optimalinequalitiesforgeneralizedlogarithmicarithmeticandgeometricmeans
_version_ 1725038685397712896