Optimal Inequalities for Generalized Logarithmic, Arithmetic, and Geometric Means
<p/> <p>For <inline-formula> <graphic file="1029-242X-2010-806825-i1.gif"/></inline-formula>, the generalized logarithmic mean <inline-formula> <graphic file="1029-242X-2010-806825-i2.gif"/></inline-formula>, arithmetic mean <inl...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2010-01-01
|
Series: | Journal of Inequalities and Applications |
Online Access: | http://www.journalofinequalitiesandapplications.com/content/2010/806825 |
id |
doaj-6ffe91b6ce3c4eb98fa64c13228edcb5 |
---|---|
record_format |
Article |
spelling |
doaj-6ffe91b6ce3c4eb98fa64c13228edcb52020-11-25T01:41:57ZengSpringerOpenJournal of Inequalities and Applications1025-58341029-242X2010-01-0120101806825Optimal Inequalities for Generalized Logarithmic, Arithmetic, and Geometric MeansChu Yu-MingLong Bo-Yong<p/> <p>For <inline-formula> <graphic file="1029-242X-2010-806825-i1.gif"/></inline-formula>, the generalized logarithmic mean <inline-formula> <graphic file="1029-242X-2010-806825-i2.gif"/></inline-formula>, arithmetic mean <inline-formula> <graphic file="1029-242X-2010-806825-i3.gif"/></inline-formula>, and geometric mean <inline-formula> <graphic file="1029-242X-2010-806825-i4.gif"/></inline-formula> of two positive numbers <inline-formula> <graphic file="1029-242X-2010-806825-i5.gif"/></inline-formula> and <inline-formula> <graphic file="1029-242X-2010-806825-i6.gif"/></inline-formula> are defined by <inline-formula> <graphic file="1029-242X-2010-806825-i7.gif"/></inline-formula>, for <inline-formula> <graphic file="1029-242X-2010-806825-i8.gif"/></inline-formula>, <inline-formula> <graphic file="1029-242X-2010-806825-i9.gif"/></inline-formula>, for <inline-formula> <graphic file="1029-242X-2010-806825-i10.gif"/></inline-formula>, <inline-formula> <graphic file="1029-242X-2010-806825-i11.gif"/></inline-formula>, and <inline-formula> <graphic file="1029-242X-2010-806825-i12.gif"/></inline-formula>, <inline-formula> <graphic file="1029-242X-2010-806825-i13.gif"/></inline-formula>, for <inline-formula> <graphic file="1029-242X-2010-806825-i14.gif"/></inline-formula>, and <inline-formula> <graphic file="1029-242X-2010-806825-i15.gif"/></inline-formula>, <inline-formula> <graphic file="1029-242X-2010-806825-i16.gif"/></inline-formula>, for <inline-formula> <graphic file="1029-242X-2010-806825-i17.gif"/></inline-formula>, and <inline-formula> <graphic file="1029-242X-2010-806825-i18.gif"/></inline-formula>, <inline-formula> <graphic file="1029-242X-2010-806825-i19.gif"/></inline-formula>, and <inline-formula> <graphic file="1029-242X-2010-806825-i20.gif"/></inline-formula>, respectively. In this paper, we find the greatest value <inline-formula> <graphic file="1029-242X-2010-806825-i21.gif"/></inline-formula> (or least value <inline-formula> <graphic file="1029-242X-2010-806825-i22.gif"/></inline-formula>, resp.) such that the inequality <inline-formula> <graphic file="1029-242X-2010-806825-i23.gif"/></inline-formula> (or <inline-formula> <graphic file="1029-242X-2010-806825-i24.gif"/></inline-formula>, resp.) holds for <inline-formula> <graphic file="1029-242X-2010-806825-i25.gif"/></inline-formula>(or <inline-formula> <graphic file="1029-242X-2010-806825-i26.gif"/></inline-formula>, resp.) and all <inline-formula> <graphic file="1029-242X-2010-806825-i27.gif"/></inline-formula> with <inline-formula> <graphic file="1029-242X-2010-806825-i28.gif"/></inline-formula>.</p>http://www.journalofinequalitiesandapplications.com/content/2010/806825 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Chu Yu-Ming Long Bo-Yong |
spellingShingle |
Chu Yu-Ming Long Bo-Yong Optimal Inequalities for Generalized Logarithmic, Arithmetic, and Geometric Means Journal of Inequalities and Applications |
author_facet |
Chu Yu-Ming Long Bo-Yong |
author_sort |
Chu Yu-Ming |
title |
Optimal Inequalities for Generalized Logarithmic, Arithmetic, and Geometric Means |
title_short |
Optimal Inequalities for Generalized Logarithmic, Arithmetic, and Geometric Means |
title_full |
Optimal Inequalities for Generalized Logarithmic, Arithmetic, and Geometric Means |
title_fullStr |
Optimal Inequalities for Generalized Logarithmic, Arithmetic, and Geometric Means |
title_full_unstemmed |
Optimal Inequalities for Generalized Logarithmic, Arithmetic, and Geometric Means |
title_sort |
optimal inequalities for generalized logarithmic, arithmetic, and geometric means |
publisher |
SpringerOpen |
series |
Journal of Inequalities and Applications |
issn |
1025-5834 1029-242X |
publishDate |
2010-01-01 |
description |
<p/> <p>For <inline-formula> <graphic file="1029-242X-2010-806825-i1.gif"/></inline-formula>, the generalized logarithmic mean <inline-formula> <graphic file="1029-242X-2010-806825-i2.gif"/></inline-formula>, arithmetic mean <inline-formula> <graphic file="1029-242X-2010-806825-i3.gif"/></inline-formula>, and geometric mean <inline-formula> <graphic file="1029-242X-2010-806825-i4.gif"/></inline-formula> of two positive numbers <inline-formula> <graphic file="1029-242X-2010-806825-i5.gif"/></inline-formula> and <inline-formula> <graphic file="1029-242X-2010-806825-i6.gif"/></inline-formula> are defined by <inline-formula> <graphic file="1029-242X-2010-806825-i7.gif"/></inline-formula>, for <inline-formula> <graphic file="1029-242X-2010-806825-i8.gif"/></inline-formula>, <inline-formula> <graphic file="1029-242X-2010-806825-i9.gif"/></inline-formula>, for <inline-formula> <graphic file="1029-242X-2010-806825-i10.gif"/></inline-formula>, <inline-formula> <graphic file="1029-242X-2010-806825-i11.gif"/></inline-formula>, and <inline-formula> <graphic file="1029-242X-2010-806825-i12.gif"/></inline-formula>, <inline-formula> <graphic file="1029-242X-2010-806825-i13.gif"/></inline-formula>, for <inline-formula> <graphic file="1029-242X-2010-806825-i14.gif"/></inline-formula>, and <inline-formula> <graphic file="1029-242X-2010-806825-i15.gif"/></inline-formula>, <inline-formula> <graphic file="1029-242X-2010-806825-i16.gif"/></inline-formula>, for <inline-formula> <graphic file="1029-242X-2010-806825-i17.gif"/></inline-formula>, and <inline-formula> <graphic file="1029-242X-2010-806825-i18.gif"/></inline-formula>, <inline-formula> <graphic file="1029-242X-2010-806825-i19.gif"/></inline-formula>, and <inline-formula> <graphic file="1029-242X-2010-806825-i20.gif"/></inline-formula>, respectively. In this paper, we find the greatest value <inline-formula> <graphic file="1029-242X-2010-806825-i21.gif"/></inline-formula> (or least value <inline-formula> <graphic file="1029-242X-2010-806825-i22.gif"/></inline-formula>, resp.) such that the inequality <inline-formula> <graphic file="1029-242X-2010-806825-i23.gif"/></inline-formula> (or <inline-formula> <graphic file="1029-242X-2010-806825-i24.gif"/></inline-formula>, resp.) holds for <inline-formula> <graphic file="1029-242X-2010-806825-i25.gif"/></inline-formula>(or <inline-formula> <graphic file="1029-242X-2010-806825-i26.gif"/></inline-formula>, resp.) and all <inline-formula> <graphic file="1029-242X-2010-806825-i27.gif"/></inline-formula> with <inline-formula> <graphic file="1029-242X-2010-806825-i28.gif"/></inline-formula>.</p> |
url |
http://www.journalofinequalitiesandapplications.com/content/2010/806825 |
work_keys_str_mv |
AT chuyuming optimalinequalitiesforgeneralizedlogarithmicarithmeticandgeometricmeans AT longboyong optimalinequalitiesforgeneralizedlogarithmicarithmeticandgeometricmeans |
_version_ |
1725038685397712896 |