Targeting of reactive isolevuglandins in mitochondrial dysfunction and inflammation
Inflammation is a major cause of morbidity and mortality in Western societies. Despite use of multiple drugs, both chronic and acute inflammation still represent major health burdens. Inflammation produces highly reactive dicarbonyl lipid peroxidation products such as isolevuglandins which covalentl...
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2019-09-01
|
Series: | Redox Biology |
Online Access: | http://www.sciencedirect.com/science/article/pii/S221323171930480X |
id |
doaj-6fedba37fca54e3b8b8d573c435de88a |
---|---|
record_format |
Article |
spelling |
doaj-6fedba37fca54e3b8b8d573c435de88a2020-11-25T00:02:54ZengElsevierRedox Biology2213-23172019-09-0126Targeting of reactive isolevuglandins in mitochondrial dysfunction and inflammationVladimir Mayorov0Peter Uchakin1Venkataraman Amarnath2Alexander V. Panov3Christy C. Bridges4Roman Uzhachenko5Bill Zackert6Christy S. Moore7Sean Davies8Anna Dikalova9Sergey Dikalov10Mercer University School of Medicine, Macon, GA, USAMercer University School of Medicine, Macon, GA, USAVanderbilt University Medical Center, Nashville, TN, USAInstitute of Molecular Biology & Biophysics, Novosibirsk, Russian FederationMercer University School of Medicine, Macon, GA, USAVanderbilt University Medical Center, Nashville, TN, USAVanderbilt University Medical Center, Nashville, TN, USAVanderbilt University Medical Center, Nashville, TN, USAVanderbilt University Medical Center, Nashville, TN, USAVanderbilt University Medical Center, Nashville, TN, USAVanderbilt University Medical Center, Nashville, TN, USA; Corresponding author. Division of Clinical Pharmacology, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB 554, Nashville, TN 37232, USA.Inflammation is a major cause of morbidity and mortality in Western societies. Despite use of multiple drugs, both chronic and acute inflammation still represent major health burdens. Inflammation produces highly reactive dicarbonyl lipid peroxidation products such as isolevuglandins which covalently modify and cross-link proteins via lysine residues. Mitochondrial dysfunction has been associated with inflammation; however, its molecular mechanisms and pathophysiological role are still obscure. We hypothesized that inflammation-induced isolevuglandins contribute to mitochondrial dysfunction and mortality. To test this hypothesis, we have (a) investigated the mitochondrial dysfunction in response to synthetic 15-E2-isolevuglandin (IsoLG) and its adducts; (b) developed a new mitochondria-targeted scavenger of isolevuglandins by conjugating 2-hydroxybenzylamine to the lipophilic cation triphenylphosphonium, (4-(4-aminomethyl)-3-hydroxyphenoxy)butyl)-triphenylphosphonium (mito2HOBA); (c) tested if mito2HOBA protects from mitochondrial dysfunction and mortality using a lipopolysaccharide model of inflammation. Acute exposure to either IsoLG or IsoLG adducts with lysine, ethanolamine or phosphatidylethanolamine inhibits mitochondrial respiration and attenuates Complex I activity. Complex II function was much more resistant to IsoLG. We confirmed that mito2HOBA markedly accumulates in isolated mitochondria and it is highly reactive with IsoLGs. To test the role of mitochondrial IsoLGs, we studied the therapeutic potential of mito2HOBA in lipopolysaccharide mouse model of sepsis. Mito2HOBA supplementation in drinking water (0.1 g/L) to lipopolysaccharide treated mice increased survival by 3-fold, improved complex I-mediated respiration, and histopathological analyses supported mito2HOBA-mediated protection of renal cortex from cell injury. These data support the role of mitochondrial IsoLG in mitochondrial dysfunction and inflammation. We conclude that reducing mitochondrial IsoLGs may be a promising therapeutic target in inflammation and conditions associated with mitochondrial oxidative stress and dysfunction. Keywords: Inflammation, Isolevuglandins, Mitochondrial dysfunction, Complex I, Respiration, Mortalityhttp://www.sciencedirect.com/science/article/pii/S221323171930480X |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Vladimir Mayorov Peter Uchakin Venkataraman Amarnath Alexander V. Panov Christy C. Bridges Roman Uzhachenko Bill Zackert Christy S. Moore Sean Davies Anna Dikalova Sergey Dikalov |
spellingShingle |
Vladimir Mayorov Peter Uchakin Venkataraman Amarnath Alexander V. Panov Christy C. Bridges Roman Uzhachenko Bill Zackert Christy S. Moore Sean Davies Anna Dikalova Sergey Dikalov Targeting of reactive isolevuglandins in mitochondrial dysfunction and inflammation Redox Biology |
author_facet |
Vladimir Mayorov Peter Uchakin Venkataraman Amarnath Alexander V. Panov Christy C. Bridges Roman Uzhachenko Bill Zackert Christy S. Moore Sean Davies Anna Dikalova Sergey Dikalov |
author_sort |
Vladimir Mayorov |
title |
Targeting of reactive isolevuglandins in mitochondrial dysfunction and inflammation |
title_short |
Targeting of reactive isolevuglandins in mitochondrial dysfunction and inflammation |
title_full |
Targeting of reactive isolevuglandins in mitochondrial dysfunction and inflammation |
title_fullStr |
Targeting of reactive isolevuglandins in mitochondrial dysfunction and inflammation |
title_full_unstemmed |
Targeting of reactive isolevuglandins in mitochondrial dysfunction and inflammation |
title_sort |
targeting of reactive isolevuglandins in mitochondrial dysfunction and inflammation |
publisher |
Elsevier |
series |
Redox Biology |
issn |
2213-2317 |
publishDate |
2019-09-01 |
description |
Inflammation is a major cause of morbidity and mortality in Western societies. Despite use of multiple drugs, both chronic and acute inflammation still represent major health burdens. Inflammation produces highly reactive dicarbonyl lipid peroxidation products such as isolevuglandins which covalently modify and cross-link proteins via lysine residues. Mitochondrial dysfunction has been associated with inflammation; however, its molecular mechanisms and pathophysiological role are still obscure. We hypothesized that inflammation-induced isolevuglandins contribute to mitochondrial dysfunction and mortality. To test this hypothesis, we have (a) investigated the mitochondrial dysfunction in response to synthetic 15-E2-isolevuglandin (IsoLG) and its adducts; (b) developed a new mitochondria-targeted scavenger of isolevuglandins by conjugating 2-hydroxybenzylamine to the lipophilic cation triphenylphosphonium, (4-(4-aminomethyl)-3-hydroxyphenoxy)butyl)-triphenylphosphonium (mito2HOBA); (c) tested if mito2HOBA protects from mitochondrial dysfunction and mortality using a lipopolysaccharide model of inflammation. Acute exposure to either IsoLG or IsoLG adducts with lysine, ethanolamine or phosphatidylethanolamine inhibits mitochondrial respiration and attenuates Complex I activity. Complex II function was much more resistant to IsoLG. We confirmed that mito2HOBA markedly accumulates in isolated mitochondria and it is highly reactive with IsoLGs. To test the role of mitochondrial IsoLGs, we studied the therapeutic potential of mito2HOBA in lipopolysaccharide mouse model of sepsis. Mito2HOBA supplementation in drinking water (0.1 g/L) to lipopolysaccharide treated mice increased survival by 3-fold, improved complex I-mediated respiration, and histopathological analyses supported mito2HOBA-mediated protection of renal cortex from cell injury. These data support the role of mitochondrial IsoLG in mitochondrial dysfunction and inflammation. We conclude that reducing mitochondrial IsoLGs may be a promising therapeutic target in inflammation and conditions associated with mitochondrial oxidative stress and dysfunction. Keywords: Inflammation, Isolevuglandins, Mitochondrial dysfunction, Complex I, Respiration, Mortality |
url |
http://www.sciencedirect.com/science/article/pii/S221323171930480X |
work_keys_str_mv |
AT vladimirmayorov targetingofreactiveisolevuglandinsinmitochondrialdysfunctionandinflammation AT peteruchakin targetingofreactiveisolevuglandinsinmitochondrialdysfunctionandinflammation AT venkataramanamarnath targetingofreactiveisolevuglandinsinmitochondrialdysfunctionandinflammation AT alexandervpanov targetingofreactiveisolevuglandinsinmitochondrialdysfunctionandinflammation AT christycbridges targetingofreactiveisolevuglandinsinmitochondrialdysfunctionandinflammation AT romanuzhachenko targetingofreactiveisolevuglandinsinmitochondrialdysfunctionandinflammation AT billzackert targetingofreactiveisolevuglandinsinmitochondrialdysfunctionandinflammation AT christysmoore targetingofreactiveisolevuglandinsinmitochondrialdysfunctionandinflammation AT seandavies targetingofreactiveisolevuglandinsinmitochondrialdysfunctionandinflammation AT annadikalova targetingofreactiveisolevuglandinsinmitochondrialdysfunctionandinflammation AT sergeydikalov targetingofreactiveisolevuglandinsinmitochondrialdysfunctionandinflammation |
_version_ |
1725436039125794816 |