Propagation of shear stress in strongly interacting metallic Fermi liquids enhances transmission of terahertz radiation

Abstract A highlight of Fermi-liquid phenomenology, as explored in neutral $$^3$$ 3 He, is the observation that in the collisionless regime shear stress propagates as if one is dealing with the transverse phonon of a solid. The existence of this “transverse zero sound” requires that the quasiparticl...

Full description

Bibliographic Details
Main Authors: D. Valentinis, J. Zaanen, D. van der Marel
Format: Article
Language:English
Published: Nature Publishing Group 2021-03-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-021-86356-2
Description
Summary:Abstract A highlight of Fermi-liquid phenomenology, as explored in neutral $$^3$$ 3 He, is the observation that in the collisionless regime shear stress propagates as if one is dealing with the transverse phonon of a solid. The existence of this “transverse zero sound” requires that the quasiparticle mass enhancement exceeds a critical value. Could such a propagating shear stress also exist in strongly correlated electron systems? Despite some noticeable differences with the neutral case in the Galilean continuum, we arrive at the verdict that transverse zero sound should be generic for mass enhancement higher than 3. We present an experimental setup that should be exquisitely sensitive in this regard: the transmission of terahertz radiation through a thin slab of heavy-fermion material will be strongly enhanced at low temperature and accompanied by giant oscillations, which reflect the interference between light itself and the “material photon” being the actual manifestation of transverse zero sound in the charged Fermi liquid.
ISSN:2045-2322