Summary: | In recent years, the surface defect detection technology of irregular industrial products based on machine vision has been widely used in various industrial scenarios. This paper takes Bluetooth headsets as an example, proposes a Bluetooth headset surface defect detection algorithm based on machine vision to quickly and accurately detect defects on the headset surface. After analyzing the surface characteristics and defect types of Bluetooth headsets, we proposed a surface scratch detection algorithm and a surface glue-overflowed detection algorithm. The result of the experiment shows that the detection algorithm can detect the surface defect of Bluetooth headsets fast as well as effectively, and the accuracy of defect recognition reaches 98%. The experiment verifies the correctness of the theory analysis and detection algorithm; therefore, the detection algorithm can be used in the recognition and detection of surface defect of Bluetooth headsets.
|