Identification of small-molecule ion channel modulators in C. elegans channelopathy models
Mutations in the voltage-gated K+ channel human ether-a-go-go-related gene (hERG) lead to Long-QT syndrome, causing life-threatening cardiac arrhythmia. Here the authors use C. elegans as a platform to run a channelopathy drug screen, identifying drugs to target hERG mutants.
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2018-09-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-018-06514-5 |
Summary: | Mutations in the voltage-gated K+ channel human ether-a-go-go-related gene (hERG) lead to Long-QT syndrome, causing life-threatening cardiac arrhythmia. Here the authors use C. elegans as a platform to run a channelopathy drug screen, identifying drugs to target hERG mutants. |
---|---|
ISSN: | 2041-1723 |