Precipitation changes in the Mediterranean basin during the Holocene from terrestrial and marine pollen records: a model–data comparison

Climate evolution of the Mediterranean region during the Holocene exhibits strong spatial and temporal variability, which is notoriously difficult for models to reproduce. We propose here a new proxy-based climate synthesis synthesis and its comparison – at a regional (∼ 100 km) level – with a regio...

Full description

Bibliographic Details
Main Authors: O. Peyron, N. Combourieu-Nebout, D. Brayshaw, S. Goring, V. Andrieu-Ponel, S. Desprat, W. Fletcher, B. Gambin, C. Ioakim, S. Joannin, U. Kotthoff, K. Kouli, V. Montade, J. Pross, L. Sadori, M. Magny
Format: Article
Language:English
Published: Copernicus Publications 2017-03-01
Series:Climate of the Past
Online Access:http://www.clim-past.net/13/249/2017/cp-13-249-2017.pdf
id doaj-6fb8987744dd4389ad2cff1488b367fa
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author O. Peyron
N. Combourieu-Nebout
D. Brayshaw
S. Goring
V. Andrieu-Ponel
S. Desprat
W. Fletcher
B. Gambin
C. Ioakim
S. Joannin
U. Kotthoff
K. Kouli
V. Montade
J. Pross
L. Sadori
M. Magny
spellingShingle O. Peyron
N. Combourieu-Nebout
D. Brayshaw
S. Goring
V. Andrieu-Ponel
S. Desprat
W. Fletcher
B. Gambin
C. Ioakim
S. Joannin
U. Kotthoff
K. Kouli
V. Montade
J. Pross
L. Sadori
M. Magny
Precipitation changes in the Mediterranean basin during the Holocene from terrestrial and marine pollen records: a model–data comparison
Climate of the Past
author_facet O. Peyron
N. Combourieu-Nebout
D. Brayshaw
S. Goring
V. Andrieu-Ponel
S. Desprat
W. Fletcher
B. Gambin
C. Ioakim
S. Joannin
U. Kotthoff
K. Kouli
V. Montade
J. Pross
L. Sadori
M. Magny
author_sort O. Peyron
title Precipitation changes in the Mediterranean basin during the Holocene from terrestrial and marine pollen records: a model–data comparison
title_short Precipitation changes in the Mediterranean basin during the Holocene from terrestrial and marine pollen records: a model–data comparison
title_full Precipitation changes in the Mediterranean basin during the Holocene from terrestrial and marine pollen records: a model–data comparison
title_fullStr Precipitation changes in the Mediterranean basin during the Holocene from terrestrial and marine pollen records: a model–data comparison
title_full_unstemmed Precipitation changes in the Mediterranean basin during the Holocene from terrestrial and marine pollen records: a model–data comparison
title_sort precipitation changes in the mediterranean basin during the holocene from terrestrial and marine pollen records: a model–data comparison
publisher Copernicus Publications
series Climate of the Past
issn 1814-9324
1814-9332
publishDate 2017-03-01
description Climate evolution of the Mediterranean region during the Holocene exhibits strong spatial and temporal variability, which is notoriously difficult for models to reproduce. We propose here a new proxy-based climate synthesis synthesis and its comparison – at a regional (∼ 100 km) level – with a regional climate model to examine (i) opposing northern and southern precipitation regimes and (ii) an east-to-west precipitation dipole during the Holocene across the Mediterranean basin. Using precipitation estimates inferred from marine and terrestrial pollen archives, we focus on the early to mid-Holocene (8000 to 6000 cal yr BP) and the late Holocene (4000 to 2000 cal yr BP), to test these hypotheses on a Mediterranean-wide scale. Special attention was given to the reconstruction of season-specific climate information, notably summer and winter precipitation. The reconstructed climatic trends corroborate the north–south partition of precipitation regimes during the Holocene. During the early Holocene, relatively wet conditions occurred in the south–central and eastern Mediterranean regions, while drier conditions prevailed from 45° N northwards. These patterns then reverse during the late Holocene. With regard to the existence of a west–east precipitation dipole during the Holocene, our results show that the strength of this dipole is strongly linked to the reconstructed seasonal parameter; early-Holocene summers show a clear east–west division, with summer precipitation having been highest in Greece and the eastern Mediterranean and lowest over Italy and the western Mediterranean. Summer precipitation in the east remained above modern values, even during the late-Holocene interval. In contrast, winter precipitation signals are less spatially coherent during the early Holocene but low precipitation is evidenced during the late Holocene. A general drying trend occurred from the early to late Holocene, particularly in the central and eastern Mediterranean.<br><br> For the same time intervals, pollen-inferred precipitation estimates were compared with model outputs, based on a regional-scale downscaling (HadRM3) of a set of global climate-model simulations (HadAM3). The high-resolution detail achieved through the downscaling is intended to enable a better comparison between site-based paleo-reconstructions and gridded model data in the complex terrain of the Mediterranean; the model outputs and pollen-inferred precipitation estimates show some overall correspondence, though modeled changes are small and at the absolute margins of statistical significance. There are suggestions that the eastern Mediterranean experienced wetter summer conditions than present during the early and late Holocene; the drying trend in winter from the early to the late Holocene also appears to be simulated. The use of this high-resolution regional climate model highlights how the inherently patchy nature of climate signals and paleo-records in the Mediterranean basin may lead to local signals that are much stronger than the large-scale pattern would suggest. Nevertheless, the east-to-west division in summer precipitation seems more marked in the pollen reconstruction than in the model outputs. The footprint of the anomalies (like today, or dry winters and wet summers) has some similarities to modern analogue atmospheric circulation patterns associated with a strong westerly circulation in winter (positive Arctic Oscillation–North Atlantic Oscillation (AO–NAO)) and a weak westerly circulation in summer associated with anticyclonic blocking; however, there also remain important differences between the paleo-simulations and these analogues. The regional climate model, consistent with other global models, does not suggest an extension of the African summer monsoon into the Mediterranean. Therefore, the extent to which summer monsoonal precipitation may have existed in the southern and eastern Mediterranean during the mid-Holocene remains an outstanding question.
url http://www.clim-past.net/13/249/2017/cp-13-249-2017.pdf
work_keys_str_mv AT opeyron precipitationchangesinthemediterraneanbasinduringtheholocenefromterrestrialandmarinepollenrecordsamodeldatacomparison
AT ncombourieunebout precipitationchangesinthemediterraneanbasinduringtheholocenefromterrestrialandmarinepollenrecordsamodeldatacomparison
AT dbrayshaw precipitationchangesinthemediterraneanbasinduringtheholocenefromterrestrialandmarinepollenrecordsamodeldatacomparison
AT sgoring precipitationchangesinthemediterraneanbasinduringtheholocenefromterrestrialandmarinepollenrecordsamodeldatacomparison
AT vandrieuponel precipitationchangesinthemediterraneanbasinduringtheholocenefromterrestrialandmarinepollenrecordsamodeldatacomparison
AT sdesprat precipitationchangesinthemediterraneanbasinduringtheholocenefromterrestrialandmarinepollenrecordsamodeldatacomparison
AT wfletcher precipitationchangesinthemediterraneanbasinduringtheholocenefromterrestrialandmarinepollenrecordsamodeldatacomparison
AT bgambin precipitationchangesinthemediterraneanbasinduringtheholocenefromterrestrialandmarinepollenrecordsamodeldatacomparison
AT cioakim precipitationchangesinthemediterraneanbasinduringtheholocenefromterrestrialandmarinepollenrecordsamodeldatacomparison
AT sjoannin precipitationchangesinthemediterraneanbasinduringtheholocenefromterrestrialandmarinepollenrecordsamodeldatacomparison
AT ukotthoff precipitationchangesinthemediterraneanbasinduringtheholocenefromterrestrialandmarinepollenrecordsamodeldatacomparison
AT kkouli precipitationchangesinthemediterraneanbasinduringtheholocenefromterrestrialandmarinepollenrecordsamodeldatacomparison
AT vmontade precipitationchangesinthemediterraneanbasinduringtheholocenefromterrestrialandmarinepollenrecordsamodeldatacomparison
AT jpross precipitationchangesinthemediterraneanbasinduringtheholocenefromterrestrialandmarinepollenrecordsamodeldatacomparison
AT lsadori precipitationchangesinthemediterraneanbasinduringtheholocenefromterrestrialandmarinepollenrecordsamodeldatacomparison
AT mmagny precipitationchangesinthemediterraneanbasinduringtheholocenefromterrestrialandmarinepollenrecordsamodeldatacomparison
_version_ 1726009896257716224
spelling doaj-6fb8987744dd4389ad2cff1488b367fa2020-11-24T21:18:17ZengCopernicus PublicationsClimate of the Past1814-93241814-93322017-03-0113324926510.5194/cp-13-249-2017Precipitation changes in the Mediterranean basin during the Holocene from terrestrial and marine pollen records: a model–data comparisonO. Peyron0N. Combourieu-Nebout1D. Brayshaw2S. Goring3V. Andrieu-Ponel4S. Desprat5W. Fletcher6B. Gambin7C. Ioakim8S. Joannin9U. Kotthoff10K. Kouli11V. Montade12J. Pross13L. Sadori14M. Magny15Institut des Sciences de l'Evolution (ISEM), Université de Montpellier, FranceUMR 7194 MNHN, Institut de Paléontologie Humaine, Paris, FranceDepartment of Meteorology, University of Reading, Reading, UKDepartment of Geography, University of Wisconsin-Madison, Wisconsin, USAInstitut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Aix Marseille Université, Aix-en-Provence, FranceEPHE, PSL Research University, Laboratoire Paléoclimatologie et Paléoenvironnements Marins, Pessac, FranceGeography, School of Environment, Education and Development, University of Manchester, Manchester, UKInstitute of Earth Systems, University of Malta, Msida, MaltaInstitute of Geology and Mineral Exploration, Athens, GreeceInstitut des Sciences de l'Evolution (ISEM), Université de Montpellier, FranceCenter for Natural History and Institute of Geology, Hamburg University, Hamburg, GermanyDepartment of Geology and Geoenvironment, National and Kapodistrian University of Athens, Athens, GreeceInstitut des Sciences de l'Evolution (ISEM), Université de Montpellier, FrancePaleoenvironmental Dynamics Group, Institute of Earth Sciences, Heidelberg University, Heidelberg, GermanyDipartimento di Biologia Ambientale, Università di Roma “La Sapienza”, Rome, ItalyUniversité de Franche-Comté, UMR6249 Chrono-Environnement, Besançon, FranceClimate evolution of the Mediterranean region during the Holocene exhibits strong spatial and temporal variability, which is notoriously difficult for models to reproduce. We propose here a new proxy-based climate synthesis synthesis and its comparison – at a regional (∼ 100 km) level – with a regional climate model to examine (i) opposing northern and southern precipitation regimes and (ii) an east-to-west precipitation dipole during the Holocene across the Mediterranean basin. Using precipitation estimates inferred from marine and terrestrial pollen archives, we focus on the early to mid-Holocene (8000 to 6000 cal yr BP) and the late Holocene (4000 to 2000 cal yr BP), to test these hypotheses on a Mediterranean-wide scale. Special attention was given to the reconstruction of season-specific climate information, notably summer and winter precipitation. The reconstructed climatic trends corroborate the north–south partition of precipitation regimes during the Holocene. During the early Holocene, relatively wet conditions occurred in the south–central and eastern Mediterranean regions, while drier conditions prevailed from 45° N northwards. These patterns then reverse during the late Holocene. With regard to the existence of a west–east precipitation dipole during the Holocene, our results show that the strength of this dipole is strongly linked to the reconstructed seasonal parameter; early-Holocene summers show a clear east–west division, with summer precipitation having been highest in Greece and the eastern Mediterranean and lowest over Italy and the western Mediterranean. Summer precipitation in the east remained above modern values, even during the late-Holocene interval. In contrast, winter precipitation signals are less spatially coherent during the early Holocene but low precipitation is evidenced during the late Holocene. A general drying trend occurred from the early to late Holocene, particularly in the central and eastern Mediterranean.<br><br> For the same time intervals, pollen-inferred precipitation estimates were compared with model outputs, based on a regional-scale downscaling (HadRM3) of a set of global climate-model simulations (HadAM3). The high-resolution detail achieved through the downscaling is intended to enable a better comparison between site-based paleo-reconstructions and gridded model data in the complex terrain of the Mediterranean; the model outputs and pollen-inferred precipitation estimates show some overall correspondence, though modeled changes are small and at the absolute margins of statistical significance. There are suggestions that the eastern Mediterranean experienced wetter summer conditions than present during the early and late Holocene; the drying trend in winter from the early to the late Holocene also appears to be simulated. The use of this high-resolution regional climate model highlights how the inherently patchy nature of climate signals and paleo-records in the Mediterranean basin may lead to local signals that are much stronger than the large-scale pattern would suggest. Nevertheless, the east-to-west division in summer precipitation seems more marked in the pollen reconstruction than in the model outputs. The footprint of the anomalies (like today, or dry winters and wet summers) has some similarities to modern analogue atmospheric circulation patterns associated with a strong westerly circulation in winter (positive Arctic Oscillation–North Atlantic Oscillation (AO–NAO)) and a weak westerly circulation in summer associated with anticyclonic blocking; however, there also remain important differences between the paleo-simulations and these analogues. The regional climate model, consistent with other global models, does not suggest an extension of the African summer monsoon into the Mediterranean. Therefore, the extent to which summer monsoonal precipitation may have existed in the southern and eastern Mediterranean during the mid-Holocene remains an outstanding question.http://www.clim-past.net/13/249/2017/cp-13-249-2017.pdf