Engineering Optical Activity of Semiconductor Nanocrystals via Ion Doping

Controlling the strength of enantioselective interaction of chiral inorganic nanoparticles with circularly polarized light is an intrinsically interesting subject of contemporary nanophotonics. This interaction is relatively weak, because the chirality scale of nanoparticles is much smaller than the...

Full description

Bibliographic Details
Main Authors: Tepliakov Nikita V., Baimuratov Anvar S., Gun’ko Yurii K., Baranov Alexander V., Fedorov Anatoly V., Rukhlenko Ivan D.
Format: Article
Language:English
Published: De Gruyter 2016-09-01
Series:Nanophotonics
Subjects:
Online Access:https://doi.org/10.1515/nanoph-2016-0034
id doaj-6f9d314498ec47daa13647deef7d3519
record_format Article
spelling doaj-6f9d314498ec47daa13647deef7d35192021-09-06T19:20:30ZengDe GruyterNanophotonics2192-86062192-86142016-09-015457357810.1515/nanoph-2016-0034nanoph-2016-0034Engineering Optical Activity of Semiconductor Nanocrystals via Ion DopingTepliakov Nikita V.0Baimuratov Anvar S.1Gun’ko Yurii K.2Baranov Alexander V.3Fedorov Anatoly V.4Rukhlenko Ivan D.5Modeling and Design of Nanostructures Laboratory, ITMO University, Saint Petersburg 197101, Russian FederationModeling and Design of Nanostructures Laboratory, ITMO University, Saint Petersburg 197101, Russian FederationSchool of Chemistry and CRANN Institute, Trinity College, Dublin, Dublin 2, IrelandITMO University, Saint Petersburg 197101, Russian FederationITMO University, Saint Petersburg 197101, Russian FederationModeling and Design of Nanostructures Laboratory, ITMO University, Saint Petersburg 197101, Russian FederationControlling the strength of enantioselective interaction of chiral inorganic nanoparticles with circularly polarized light is an intrinsically interesting subject of contemporary nanophotonics. This interaction is relatively weak, because the chirality scale of nanoparticles is much smaller than the optical wavelength. Here we theoretically demonstrate that ion doping provides a powerful tool of engineering and enhances optical activity of semiconductor nanocrystals. We show that by carefully positioning ionic impurities inside the nanocrystals, one can maximize the rotatory strengths of intraband optical transitions, and make them 100 times larger than the typical rotatory strengths of small chiral molecules.https://doi.org/10.1515/nanoph-2016-0034ion dopingchiralitynanocrystalscircular dichroism
collection DOAJ
language English
format Article
sources DOAJ
author Tepliakov Nikita V.
Baimuratov Anvar S.
Gun’ko Yurii K.
Baranov Alexander V.
Fedorov Anatoly V.
Rukhlenko Ivan D.
spellingShingle Tepliakov Nikita V.
Baimuratov Anvar S.
Gun’ko Yurii K.
Baranov Alexander V.
Fedorov Anatoly V.
Rukhlenko Ivan D.
Engineering Optical Activity of Semiconductor Nanocrystals via Ion Doping
Nanophotonics
ion doping
chirality
nanocrystals
circular dichroism
author_facet Tepliakov Nikita V.
Baimuratov Anvar S.
Gun’ko Yurii K.
Baranov Alexander V.
Fedorov Anatoly V.
Rukhlenko Ivan D.
author_sort Tepliakov Nikita V.
title Engineering Optical Activity of Semiconductor Nanocrystals via Ion Doping
title_short Engineering Optical Activity of Semiconductor Nanocrystals via Ion Doping
title_full Engineering Optical Activity of Semiconductor Nanocrystals via Ion Doping
title_fullStr Engineering Optical Activity of Semiconductor Nanocrystals via Ion Doping
title_full_unstemmed Engineering Optical Activity of Semiconductor Nanocrystals via Ion Doping
title_sort engineering optical activity of semiconductor nanocrystals via ion doping
publisher De Gruyter
series Nanophotonics
issn 2192-8606
2192-8614
publishDate 2016-09-01
description Controlling the strength of enantioselective interaction of chiral inorganic nanoparticles with circularly polarized light is an intrinsically interesting subject of contemporary nanophotonics. This interaction is relatively weak, because the chirality scale of nanoparticles is much smaller than the optical wavelength. Here we theoretically demonstrate that ion doping provides a powerful tool of engineering and enhances optical activity of semiconductor nanocrystals. We show that by carefully positioning ionic impurities inside the nanocrystals, one can maximize the rotatory strengths of intraband optical transitions, and make them 100 times larger than the typical rotatory strengths of small chiral molecules.
topic ion doping
chirality
nanocrystals
circular dichroism
url https://doi.org/10.1515/nanoph-2016-0034
work_keys_str_mv AT tepliakovnikitav engineeringopticalactivityofsemiconductornanocrystalsviaiondoping
AT baimuratovanvars engineeringopticalactivityofsemiconductornanocrystalsviaiondoping
AT gunkoyuriik engineeringopticalactivityofsemiconductornanocrystalsviaiondoping
AT baranovalexanderv engineeringopticalactivityofsemiconductornanocrystalsviaiondoping
AT fedorovanatolyv engineeringopticalactivityofsemiconductornanocrystalsviaiondoping
AT rukhlenkoivand engineeringopticalactivityofsemiconductornanocrystalsviaiondoping
_version_ 1717776578523430912