A stochastic quantum program synthesis framework based on Bayesian optimization
Abstract Quantum computers and algorithms can offer exponential performance improvement over some NP-complete programs which cannot be run efficiently through a Von Neumann computing approach. In this paper, we present BayeSyn, which utilizes an enhanced stochastic program synthesis and Bayesian opt...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2021-06-01
|
Series: | Scientific Reports |
Online Access: | https://doi.org/10.1038/s41598-021-91035-3 |
Summary: | Abstract Quantum computers and algorithms can offer exponential performance improvement over some NP-complete programs which cannot be run efficiently through a Von Neumann computing approach. In this paper, we present BayeSyn, which utilizes an enhanced stochastic program synthesis and Bayesian optimization to automatically generate quantum programs from high-level languages subject to certain constraints. We find that stochastic synthesis can comparatively and efficiently generate a program with a lower cost from the high dimensional program space. We also realize that hyperparameters used in stochastic synthesis play a significant role in determining the optimal program. Therefore, BayeSyn utilizes Bayesian optimization to fine-tune such parameters to generate a suitable quantum program. |
---|---|
ISSN: | 2045-2322 |