A stochastic quantum program synthesis framework based on Bayesian optimization

Abstract Quantum computers and algorithms can offer exponential performance improvement over some NP-complete programs which cannot be run efficiently through a Von Neumann computing approach. In this paper, we present BayeSyn, which utilizes an enhanced stochastic program synthesis and Bayesian opt...

Full description

Bibliographic Details
Main Authors: Yao Xiao, Shahin Nazarian, Paul Bogdan
Format: Article
Language:English
Published: Nature Publishing Group 2021-06-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-021-91035-3
Description
Summary:Abstract Quantum computers and algorithms can offer exponential performance improvement over some NP-complete programs which cannot be run efficiently through a Von Neumann computing approach. In this paper, we present BayeSyn, which utilizes an enhanced stochastic program synthesis and Bayesian optimization to automatically generate quantum programs from high-level languages subject to certain constraints. We find that stochastic synthesis can comparatively and efficiently generate a program with a lower cost from the high dimensional program space. We also realize that hyperparameters used in stochastic synthesis play a significant role in determining the optimal program. Therefore, BayeSyn utilizes Bayesian optimization to fine-tune such parameters to generate a suitable quantum program.
ISSN:2045-2322