Summary: | Multi-rotor unmanned aerial vehicles (UAVs) have become common in recent years, but non-rotor UAVs are still relatively rare. This study used an aerodynamic model to replace the multi-rotor design concept and examine load bearing capabilities, specifically for delivery of medical goods by non-rotor UAV. We use static structural simulations for static analysis and fatigue analysis to investigate the capabilities of different structural materials. The simulation results combined fatigue strength verifications, structural safety factor calculations, and finite element analyses to calculate parameters like total deformation, stress ratios, and strain magnitudes to analyze structural fatigue life. The analyses indicated that the factors of safety and fatigue lifetimes of two structural materials far exceeded standard values. They can be used to optimize designs that prevent plastic deformation and breakage. Time and money are saved in the research and development process by carrying out these calculations and static analyses of physical properties before prototypes are actually built.
|