A uniqueness result for a Schrödinger–Poisson system with strong singularity

In this paper, we consider the following Schrödinger–Poisson system with strong singularity $$\begin{cases} -\Delta{u}+\phi u=f(x)u^{-\gamma}, & x\in \Omega,\\ -\Delta{\phi}=u^2, & x\in\Omega,\\ u>0, & x\in\Omega,\\ u=\phi=0, & x\in\partial\Omega, \end{cases}$$ where $\Omega\subs...

Full description

Bibliographic Details
Main Authors: Shengbin Yu, Jianqing Chen
Format: Article
Language:English
Published: University of Szeged 2019-11-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=7605
Description
Summary:In this paper, we consider the following Schrödinger–Poisson system with strong singularity $$\begin{cases} -\Delta{u}+\phi u=f(x)u^{-\gamma}, & x\in \Omega,\\ -\Delta{\phi}=u^2, & x\in\Omega,\\ u>0, & x\in\Omega,\\ u=\phi=0, & x\in\partial\Omega, \end{cases}$$ where $\Omega\subset \mathbb{R}^3$ is a smooth bounded domain, $\gamma>1$, $f\in L^1(\Omega)$ is a positive function (i.e. $f(x)>0$ a.e. in $\Omega$). A necessary and sufficient condition on the existence and uniqueness of positive weak solution of the system is obtained. The results supplement the main conclusions in recent literature.
ISSN:1417-3875
1417-3875