Automobile indexation from 3D point clouds of urban scenarios
In this paper, we introduce a methodology for the detection and segmentation of automobiles in urban scenarios. We use the LiDAR Velodyne HDL-64E to scan the surroundings. The method is comprised of three steps: (1) remove facades, ground plan, and unstructured objects, (2) smoothing data using robu...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Taylor & Francis Group
2021-07-01
|
Series: | Automatika |
Subjects: | |
Online Access: | http://dx.doi.org/10.1080/00051144.2021.1947609 |
id |
doaj-6f587aebf158437986932597e6512b5a |
---|---|
record_format |
Article |
spelling |
doaj-6f587aebf158437986932597e6512b5a2021-07-06T11:30:09ZengTaylor & Francis GroupAutomatika0005-11441848-33802021-07-0162331131810.1080/00051144.2021.19476091947609Automobile indexation from 3D point clouds of urban scenariosRamirez-Pedraza Alfonso0González-Barbosa José-Joel1Ramirez-Pedraza Raymundo2González-Barbosa Erick-Alejandro3Hurtado-Ramos Juan-Bautista4Cátedra CONACYT – Centro de Investigaciones en Óptica A.C.CICATA-QroCINVESTAVTecnológico Nacional de México/ITS de IrapuatoCICATA-QroIn this paper, we introduce a methodology for the detection and segmentation of automobiles in urban scenarios. We use the LiDAR Velodyne HDL-64E to scan the surroundings. The method is comprised of three steps: (1) remove facades, ground plan, and unstructured objects, (2) smoothing data using robust principal component analysis (RPCA), and finally, (3) unstructured objects model and indexing. The dataset is partitioned into training with 4500 objects and test with 3000 objects. Mean Shift thresholds, the filter, the Delaunay parameters, and the histogram modelling are optimized via ROC analysis. It is observed that the car scan quality affects our method to a lesser degree when compared with state-of-the-art methods.http://dx.doi.org/10.1080/00051144.2021.1947609automobile indexation3d points cloudsegmentationindexing |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ramirez-Pedraza Alfonso González-Barbosa José-Joel Ramirez-Pedraza Raymundo González-Barbosa Erick-Alejandro Hurtado-Ramos Juan-Bautista |
spellingShingle |
Ramirez-Pedraza Alfonso González-Barbosa José-Joel Ramirez-Pedraza Raymundo González-Barbosa Erick-Alejandro Hurtado-Ramos Juan-Bautista Automobile indexation from 3D point clouds of urban scenarios Automatika automobile indexation 3d points cloud segmentation indexing |
author_facet |
Ramirez-Pedraza Alfonso González-Barbosa José-Joel Ramirez-Pedraza Raymundo González-Barbosa Erick-Alejandro Hurtado-Ramos Juan-Bautista |
author_sort |
Ramirez-Pedraza Alfonso |
title |
Automobile indexation from 3D point clouds of urban scenarios |
title_short |
Automobile indexation from 3D point clouds of urban scenarios |
title_full |
Automobile indexation from 3D point clouds of urban scenarios |
title_fullStr |
Automobile indexation from 3D point clouds of urban scenarios |
title_full_unstemmed |
Automobile indexation from 3D point clouds of urban scenarios |
title_sort |
automobile indexation from 3d point clouds of urban scenarios |
publisher |
Taylor & Francis Group |
series |
Automatika |
issn |
0005-1144 1848-3380 |
publishDate |
2021-07-01 |
description |
In this paper, we introduce a methodology for the detection and segmentation of automobiles in urban scenarios. We use the LiDAR Velodyne HDL-64E to scan the surroundings. The method is comprised of three steps: (1) remove facades, ground plan, and unstructured objects, (2) smoothing data using robust principal component analysis (RPCA), and finally, (3) unstructured objects model and indexing. The dataset is partitioned into training with 4500 objects and test with 3000 objects. Mean Shift thresholds, the filter, the Delaunay parameters, and the histogram modelling are optimized via ROC analysis. It is observed that the car scan quality affects our method to a lesser degree when compared with state-of-the-art methods. |
topic |
automobile indexation 3d points cloud segmentation indexing |
url |
http://dx.doi.org/10.1080/00051144.2021.1947609 |
work_keys_str_mv |
AT ramirezpedrazaalfonso automobileindexationfrom3dpointcloudsofurbanscenarios AT gonzalezbarbosajosejoel automobileindexationfrom3dpointcloudsofurbanscenarios AT ramirezpedrazaraymundo automobileindexationfrom3dpointcloudsofurbanscenarios AT gonzalezbarbosaerickalejandro automobileindexationfrom3dpointcloudsofurbanscenarios AT hurtadoramosjuanbautista automobileindexationfrom3dpointcloudsofurbanscenarios |
_version_ |
1721317655857594368 |