Automobile indexation from 3D point clouds of urban scenarios

In this paper, we introduce a methodology for the detection and segmentation of automobiles in urban scenarios. We use the LiDAR Velodyne HDL-64E to scan the surroundings. The method is comprised of three steps: (1) remove facades, ground plan, and unstructured objects, (2) smoothing data using robu...

Full description

Bibliographic Details
Main Authors: Ramirez-Pedraza Alfonso, González-Barbosa José-Joel, Ramirez-Pedraza Raymundo, González-Barbosa Erick-Alejandro, Hurtado-Ramos Juan-Bautista
Format: Article
Language:English
Published: Taylor & Francis Group 2021-07-01
Series:Automatika
Subjects:
Online Access:http://dx.doi.org/10.1080/00051144.2021.1947609
id doaj-6f587aebf158437986932597e6512b5a
record_format Article
spelling doaj-6f587aebf158437986932597e6512b5a2021-07-06T11:30:09ZengTaylor & Francis GroupAutomatika0005-11441848-33802021-07-0162331131810.1080/00051144.2021.19476091947609Automobile indexation from 3D point clouds of urban scenariosRamirez-Pedraza Alfonso0González-Barbosa José-Joel1Ramirez-Pedraza Raymundo2González-Barbosa Erick-Alejandro3Hurtado-Ramos Juan-Bautista4Cátedra CONACYT – Centro de Investigaciones en Óptica A.C.CICATA-QroCINVESTAVTecnológico Nacional de México/ITS de IrapuatoCICATA-QroIn this paper, we introduce a methodology for the detection and segmentation of automobiles in urban scenarios. We use the LiDAR Velodyne HDL-64E to scan the surroundings. The method is comprised of three steps: (1) remove facades, ground plan, and unstructured objects, (2) smoothing data using robust principal component analysis (RPCA), and finally, (3) unstructured objects model and indexing. The dataset is partitioned into training with 4500 objects and test with 3000 objects. Mean Shift thresholds, the filter, the Delaunay parameters, and the histogram modelling are optimized via ROC analysis. It is observed that the car scan quality affects our method to a lesser degree when compared with state-of-the-art methods.http://dx.doi.org/10.1080/00051144.2021.1947609automobile indexation3d points cloudsegmentationindexing
collection DOAJ
language English
format Article
sources DOAJ
author Ramirez-Pedraza Alfonso
González-Barbosa José-Joel
Ramirez-Pedraza Raymundo
González-Barbosa Erick-Alejandro
Hurtado-Ramos Juan-Bautista
spellingShingle Ramirez-Pedraza Alfonso
González-Barbosa José-Joel
Ramirez-Pedraza Raymundo
González-Barbosa Erick-Alejandro
Hurtado-Ramos Juan-Bautista
Automobile indexation from 3D point clouds of urban scenarios
Automatika
automobile indexation
3d points cloud
segmentation
indexing
author_facet Ramirez-Pedraza Alfonso
González-Barbosa José-Joel
Ramirez-Pedraza Raymundo
González-Barbosa Erick-Alejandro
Hurtado-Ramos Juan-Bautista
author_sort Ramirez-Pedraza Alfonso
title Automobile indexation from 3D point clouds of urban scenarios
title_short Automobile indexation from 3D point clouds of urban scenarios
title_full Automobile indexation from 3D point clouds of urban scenarios
title_fullStr Automobile indexation from 3D point clouds of urban scenarios
title_full_unstemmed Automobile indexation from 3D point clouds of urban scenarios
title_sort automobile indexation from 3d point clouds of urban scenarios
publisher Taylor & Francis Group
series Automatika
issn 0005-1144
1848-3380
publishDate 2021-07-01
description In this paper, we introduce a methodology for the detection and segmentation of automobiles in urban scenarios. We use the LiDAR Velodyne HDL-64E to scan the surroundings. The method is comprised of three steps: (1) remove facades, ground plan, and unstructured objects, (2) smoothing data using robust principal component analysis (RPCA), and finally, (3) unstructured objects model and indexing. The dataset is partitioned into training with 4500 objects and test with 3000 objects. Mean Shift thresholds, the filter, the Delaunay parameters, and the histogram modelling are optimized via ROC analysis. It is observed that the car scan quality affects our method to a lesser degree when compared with state-of-the-art methods.
topic automobile indexation
3d points cloud
segmentation
indexing
url http://dx.doi.org/10.1080/00051144.2021.1947609
work_keys_str_mv AT ramirezpedrazaalfonso automobileindexationfrom3dpointcloudsofurbanscenarios
AT gonzalezbarbosajosejoel automobileindexationfrom3dpointcloudsofurbanscenarios
AT ramirezpedrazaraymundo automobileindexationfrom3dpointcloudsofurbanscenarios
AT gonzalezbarbosaerickalejandro automobileindexationfrom3dpointcloudsofurbanscenarios
AT hurtadoramosjuanbautista automobileindexationfrom3dpointcloudsofurbanscenarios
_version_ 1721317655857594368