Existence results for a class of (p,q) Laplacian systems
Abstract. We establish the existence of a nontrivial solution for inhomogeneous quasilinear elliptic systems: −∆pu = λ a(x) u |u|γ−2 + α (α + β)–1 b(x) u |u|α−2 |v|β + f in Ω, −∆qv = µ d(x) v |v|γ−2 + β (α + β)–1 b(x) |u|α v |v|β−2 + g in Ω, (u,v) ∈ W01,p(Ω) × W01,q(Ω). Our result depending o...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Vilnius University Press
2010-10-01
|
Series: | Nonlinear Analysis |
Subjects: | |
Online Access: | http://www.journals.vu.lt/nonlinear-analysis/article/view/14311 |
id |
doaj-6f4045bdd61847879c2fe7c06a1b4659 |
---|---|
record_format |
Article |
spelling |
doaj-6f4045bdd61847879c2fe7c06a1b46592020-11-25T00:03:28ZengVilnius University PressNonlinear Analysis1392-51132335-89632010-10-0115410.15388/NA.15.4.14311Existence results for a class of (p,q) Laplacian systemsG. A. Afrouzi0M. Mirzapour1University of Mazandaran, IranUniversity of Mazandaran, Iran Abstract. We establish the existence of a nontrivial solution for inhomogeneous quasilinear elliptic systems: −∆pu = λ a(x) u |u|γ−2 + α (α + β)–1 b(x) u |u|α−2 |v|β + f in Ω, −∆qv = µ d(x) v |v|γ−2 + β (α + β)–1 b(x) |u|α v |v|β−2 + g in Ω, (u,v) ∈ W01,p(Ω) × W01,q(Ω). Our result depending on the local minimization. http://www.journals.vu.lt/nonlinear-analysis/article/view/14311elliptic systemsNehari manifoldEkeland variational principlelocal minimization |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
G. A. Afrouzi M. Mirzapour |
spellingShingle |
G. A. Afrouzi M. Mirzapour Existence results for a class of (p,q) Laplacian systems Nonlinear Analysis elliptic systems Nehari manifold Ekeland variational principle local minimization |
author_facet |
G. A. Afrouzi M. Mirzapour |
author_sort |
G. A. Afrouzi |
title |
Existence results for a class of (p,q) Laplacian systems |
title_short |
Existence results for a class of (p,q) Laplacian systems |
title_full |
Existence results for a class of (p,q) Laplacian systems |
title_fullStr |
Existence results for a class of (p,q) Laplacian systems |
title_full_unstemmed |
Existence results for a class of (p,q) Laplacian systems |
title_sort |
existence results for a class of (p,q) laplacian systems |
publisher |
Vilnius University Press |
series |
Nonlinear Analysis |
issn |
1392-5113 2335-8963 |
publishDate |
2010-10-01 |
description |
Abstract. We establish the existence of a nontrivial solution for inhomogeneous
quasilinear elliptic systems:
−∆pu = λ a(x) u |u|γ−2 + α (α + β)–1 b(x) u |u|α−2 |v|β + f in Ω,
−∆qv = µ d(x) v |v|γ−2 + β (α + β)–1 b(x) |u|α v |v|β−2 + g in Ω,
(u,v) ∈ W01,p(Ω) × W01,q(Ω).
Our result depending on the local minimization.
|
topic |
elliptic systems Nehari manifold Ekeland variational principle local minimization |
url |
http://www.journals.vu.lt/nonlinear-analysis/article/view/14311 |
work_keys_str_mv |
AT gaafrouzi existenceresultsforaclassofpqlaplaciansystems AT mmirzapour existenceresultsforaclassofpqlaplaciansystems |
_version_ |
1725433733079629824 |