Existence results for a class of (p,q) Laplacian systems

Abstract. We establish the existence of a nontrivial solution for inhomogeneous quasilinear elliptic systems: −∆pu = λ a(x) u |u|γ−2 + α (α + β)–1 b(x) u |u|α−2 |v|β + f    in Ω, −∆qv = µ d(x) v |v|γ−2 + β (α + β)–1 b(x) |u|α v |v|β−2 + g    in Ω, (u,v) ∈ W01,p(Ω) × W01,q(Ω). Our result depending o...

Full description

Bibliographic Details
Main Authors: G. A. Afrouzi, M. Mirzapour
Format: Article
Language:English
Published: Vilnius University Press 2010-10-01
Series:Nonlinear Analysis
Subjects:
Online Access:http://www.journals.vu.lt/nonlinear-analysis/article/view/14311
id doaj-6f4045bdd61847879c2fe7c06a1b4659
record_format Article
spelling doaj-6f4045bdd61847879c2fe7c06a1b46592020-11-25T00:03:28ZengVilnius University PressNonlinear Analysis1392-51132335-89632010-10-0115410.15388/NA.15.4.14311Existence results for a class of (p,q) Laplacian systemsG. A. Afrouzi0M. Mirzapour1University of Mazandaran, IranUniversity of Mazandaran, Iran Abstract. We establish the existence of a nontrivial solution for inhomogeneous quasilinear elliptic systems: −∆pu = λ a(x) u |u|γ−2 + α (α + β)–1 b(x) u |u|α−2 |v|β + f    in Ω, −∆qv = µ d(x) v |v|γ−2 + β (α + β)–1 b(x) |u|α v |v|β−2 + g    in Ω, (u,v) ∈ W01,p(Ω) × W01,q(Ω). Our result depending on the local minimization. http://www.journals.vu.lt/nonlinear-analysis/article/view/14311elliptic systemsNehari manifoldEkeland variational principlelocal minimization
collection DOAJ
language English
format Article
sources DOAJ
author G. A. Afrouzi
M. Mirzapour
spellingShingle G. A. Afrouzi
M. Mirzapour
Existence results for a class of (p,q) Laplacian systems
Nonlinear Analysis
elliptic systems
Nehari manifold
Ekeland variational principle
local minimization
author_facet G. A. Afrouzi
M. Mirzapour
author_sort G. A. Afrouzi
title Existence results for a class of (p,q) Laplacian systems
title_short Existence results for a class of (p,q) Laplacian systems
title_full Existence results for a class of (p,q) Laplacian systems
title_fullStr Existence results for a class of (p,q) Laplacian systems
title_full_unstemmed Existence results for a class of (p,q) Laplacian systems
title_sort existence results for a class of (p,q) laplacian systems
publisher Vilnius University Press
series Nonlinear Analysis
issn 1392-5113
2335-8963
publishDate 2010-10-01
description Abstract. We establish the existence of a nontrivial solution for inhomogeneous quasilinear elliptic systems: −∆pu = λ a(x) u |u|γ−2 + α (α + β)–1 b(x) u |u|α−2 |v|β + f    in Ω, −∆qv = µ d(x) v |v|γ−2 + β (α + β)–1 b(x) |u|α v |v|β−2 + g    in Ω, (u,v) ∈ W01,p(Ω) × W01,q(Ω). Our result depending on the local minimization.
topic elliptic systems
Nehari manifold
Ekeland variational principle
local minimization
url http://www.journals.vu.lt/nonlinear-analysis/article/view/14311
work_keys_str_mv AT gaafrouzi existenceresultsforaclassofpqlaplaciansystems
AT mmirzapour existenceresultsforaclassofpqlaplaciansystems
_version_ 1725433733079629824