Continuity, compactness, fixed points, and integral equations

An integral equation, $x(t)=a(t)-\int^t_{-\infty} D(t,s)g(x(s))ds$ with $a(t)$ bounded, is studied by means of a Liapunov functional. There results an a priori bound on solutions. This gives rise to an interplay between continuity and compactness and leads us to a fixed point theorem of Schaefer ty...

Full description

Bibliographic Details
Main Authors: Theodore Burton, Géza Makay
Format: Article
Language:English
Published: University of Szeged 2002-01-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=90
Description
Summary:An integral equation, $x(t)=a(t)-\int^t_{-\infty} D(t,s)g(x(s))ds$ with $a(t)$ bounded, is studied by means of a Liapunov functional. There results an a priori bound on solutions. This gives rise to an interplay between continuity and compactness and leads us to a fixed point theorem of Schaefer type. It is a very flexible fixed point theorem which enables us to show that the solution inherits properties of $a(t)$, including periodic or almost periodic solutions in a Banach space.
ISSN:1417-3875
1417-3875