Neuropeptide S Receptor Stimulation Excites Principal Neurons in Murine Basolateral Amygdala through a Calcium-Dependent Decrease in Membrane Potassium Conductance

Background: The neuropeptide S system, consisting of the 20 amino acid neuropeptide NPS and its G-protein-coupled receptor (GPCR) neuropeptide S receptor 1 (NPSR1), has been studied intensively in rodents. Although there is a lot of data retrieved from behavioral studies using pharmacology or geneti...

Full description

Bibliographic Details
Main Authors: Sion Park, Pia Flüthmann, Carla Wolany, Lena Goedecke, Hannah Maleen Spenner, Thomas Budde, Hans-Christian Pape, Kay Jüngling
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:Pharmaceuticals
Subjects:
Online Access:https://www.mdpi.com/1424-8247/14/6/519
id doaj-6f1a94be40dd4bc792a1eb11a3aeae20
record_format Article
spelling doaj-6f1a94be40dd4bc792a1eb11a3aeae202021-06-01T01:24:38ZengMDPI AGPharmaceuticals1424-82472021-05-011451951910.3390/ph14060519Neuropeptide S Receptor Stimulation Excites Principal Neurons in Murine Basolateral Amygdala through a Calcium-Dependent Decrease in Membrane Potassium ConductanceSion Park0Pia Flüthmann1Carla Wolany2Lena Goedecke3Hannah Maleen Spenner4Thomas Budde5Hans-Christian Pape6Kay Jüngling7Institute of Physiology I, Westfälische Wilhelms-Universität Münster, Robert-Koch Strasse 27a, 48149 Münster, GermanyInstitute of Physiology I, Westfälische Wilhelms-Universität Münster, Robert-Koch Strasse 27a, 48149 Münster, GermanyInstitute of Physiology I, Westfälische Wilhelms-Universität Münster, Robert-Koch Strasse 27a, 48149 Münster, GermanyInstitute of Physiology I, Westfälische Wilhelms-Universität Münster, Robert-Koch Strasse 27a, 48149 Münster, GermanyInstitute of Physiology I, Westfälische Wilhelms-Universität Münster, Robert-Koch Strasse 27a, 48149 Münster, GermanyInstitute of Physiology I, Westfälische Wilhelms-Universität Münster, Robert-Koch Strasse 27a, 48149 Münster, GermanyInstitute of Physiology I, Westfälische Wilhelms-Universität Münster, Robert-Koch Strasse 27a, 48149 Münster, GermanyInstitute of Physiology I, Westfälische Wilhelms-Universität Münster, Robert-Koch Strasse 27a, 48149 Münster, GermanyBackground: The neuropeptide S system, consisting of the 20 amino acid neuropeptide NPS and its G-protein-coupled receptor (GPCR) neuropeptide S receptor 1 (NPSR1), has been studied intensively in rodents. Although there is a lot of data retrieved from behavioral studies using pharmacology or genetic interventions, little is known about intracellular signaling cascades in neurons endogenously expressing the NPSR1. Methods: To elucidate possible G-protein-dependent signaling and effector systems, we performed whole-cell patch-clamp recordings on principal neurons of the anterior basolateral amygdala of mice. We used pharmacological interventions to characterize the NPSR1-mediated current induced by NPS application. Results: Application of NPS reliably evokes inward-directed currents in amygdalar neurons recorded in brain slice preparations of male and female mice. The NPSR1-mediated current had a reversal potential near the potassium reversal potential (E<sub>K</sub>) and was accompanied by an increase in membrane input resistance. GDP-β-S and BAPTA, but neither adenylyl cyclase inhibition nor 8-Br-cAMP, abolished the current. Intracellular tetraethylammonium or 4-aminopyridine reduced the NPS-evoked current. Conclusion: NPSR1 activation in amygdalar neurons inhibits voltage-gated potassium (K<sup>+</sup>) channels, most likely members of the delayed rectifier family. Intracellularly, G<sub>αq</sub> signaling and calcium ions seem to be mandatory for the observed current and increased neuronal excitability.https://www.mdpi.com/1424-8247/14/6/519NPSR1amygdalapotassium conductancecalciumpatch-clampmice
collection DOAJ
language English
format Article
sources DOAJ
author Sion Park
Pia Flüthmann
Carla Wolany
Lena Goedecke
Hannah Maleen Spenner
Thomas Budde
Hans-Christian Pape
Kay Jüngling
spellingShingle Sion Park
Pia Flüthmann
Carla Wolany
Lena Goedecke
Hannah Maleen Spenner
Thomas Budde
Hans-Christian Pape
Kay Jüngling
Neuropeptide S Receptor Stimulation Excites Principal Neurons in Murine Basolateral Amygdala through a Calcium-Dependent Decrease in Membrane Potassium Conductance
Pharmaceuticals
NPSR1
amygdala
potassium conductance
calcium
patch-clamp
mice
author_facet Sion Park
Pia Flüthmann
Carla Wolany
Lena Goedecke
Hannah Maleen Spenner
Thomas Budde
Hans-Christian Pape
Kay Jüngling
author_sort Sion Park
title Neuropeptide S Receptor Stimulation Excites Principal Neurons in Murine Basolateral Amygdala through a Calcium-Dependent Decrease in Membrane Potassium Conductance
title_short Neuropeptide S Receptor Stimulation Excites Principal Neurons in Murine Basolateral Amygdala through a Calcium-Dependent Decrease in Membrane Potassium Conductance
title_full Neuropeptide S Receptor Stimulation Excites Principal Neurons in Murine Basolateral Amygdala through a Calcium-Dependent Decrease in Membrane Potassium Conductance
title_fullStr Neuropeptide S Receptor Stimulation Excites Principal Neurons in Murine Basolateral Amygdala through a Calcium-Dependent Decrease in Membrane Potassium Conductance
title_full_unstemmed Neuropeptide S Receptor Stimulation Excites Principal Neurons in Murine Basolateral Amygdala through a Calcium-Dependent Decrease in Membrane Potassium Conductance
title_sort neuropeptide s receptor stimulation excites principal neurons in murine basolateral amygdala through a calcium-dependent decrease in membrane potassium conductance
publisher MDPI AG
series Pharmaceuticals
issn 1424-8247
publishDate 2021-05-01
description Background: The neuropeptide S system, consisting of the 20 amino acid neuropeptide NPS and its G-protein-coupled receptor (GPCR) neuropeptide S receptor 1 (NPSR1), has been studied intensively in rodents. Although there is a lot of data retrieved from behavioral studies using pharmacology or genetic interventions, little is known about intracellular signaling cascades in neurons endogenously expressing the NPSR1. Methods: To elucidate possible G-protein-dependent signaling and effector systems, we performed whole-cell patch-clamp recordings on principal neurons of the anterior basolateral amygdala of mice. We used pharmacological interventions to characterize the NPSR1-mediated current induced by NPS application. Results: Application of NPS reliably evokes inward-directed currents in amygdalar neurons recorded in brain slice preparations of male and female mice. The NPSR1-mediated current had a reversal potential near the potassium reversal potential (E<sub>K</sub>) and was accompanied by an increase in membrane input resistance. GDP-β-S and BAPTA, but neither adenylyl cyclase inhibition nor 8-Br-cAMP, abolished the current. Intracellular tetraethylammonium or 4-aminopyridine reduced the NPS-evoked current. Conclusion: NPSR1 activation in amygdalar neurons inhibits voltage-gated potassium (K<sup>+</sup>) channels, most likely members of the delayed rectifier family. Intracellularly, G<sub>αq</sub> signaling and calcium ions seem to be mandatory for the observed current and increased neuronal excitability.
topic NPSR1
amygdala
potassium conductance
calcium
patch-clamp
mice
url https://www.mdpi.com/1424-8247/14/6/519
work_keys_str_mv AT sionpark neuropeptidesreceptorstimulationexcitesprincipalneuronsinmurinebasolateralamygdalathroughacalciumdependentdecreaseinmembranepotassiumconductance
AT piafluthmann neuropeptidesreceptorstimulationexcitesprincipalneuronsinmurinebasolateralamygdalathroughacalciumdependentdecreaseinmembranepotassiumconductance
AT carlawolany neuropeptidesreceptorstimulationexcitesprincipalneuronsinmurinebasolateralamygdalathroughacalciumdependentdecreaseinmembranepotassiumconductance
AT lenagoedecke neuropeptidesreceptorstimulationexcitesprincipalneuronsinmurinebasolateralamygdalathroughacalciumdependentdecreaseinmembranepotassiumconductance
AT hannahmaleenspenner neuropeptidesreceptorstimulationexcitesprincipalneuronsinmurinebasolateralamygdalathroughacalciumdependentdecreaseinmembranepotassiumconductance
AT thomasbudde neuropeptidesreceptorstimulationexcitesprincipalneuronsinmurinebasolateralamygdalathroughacalciumdependentdecreaseinmembranepotassiumconductance
AT hanschristianpape neuropeptidesreceptorstimulationexcitesprincipalneuronsinmurinebasolateralamygdalathroughacalciumdependentdecreaseinmembranepotassiumconductance
AT kayjungling neuropeptidesreceptorstimulationexcitesprincipalneuronsinmurinebasolateralamygdalathroughacalciumdependentdecreaseinmembranepotassiumconductance
_version_ 1721412440834441216