Time course of changes in oxidative stress and stress-induced proteins in cardiomyocytes exposed to doxorubicin and prevention by vitamin C.

We previously reported that Vitamin C (Vit C) protects against doxorubicin (Dox)-induced cardiotoxicity by reducing oxidative stress, p38 mitogen-activated kinase (MAPK) and p53 activation and rescuing cell death in isolated adult cardiomyocytes. The pattern of activation and the role of oxidative s...

Full description

Bibliographic Details
Main Authors: Ana Ludke, Gauri Akolkar, Prathapan Ayyappan, Anita K Sharma, Pawan K Singal
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2017-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC5497966?pdf=render
id doaj-6f1a5ca208d9417ab47b8c7f01b609c5
record_format Article
spelling doaj-6f1a5ca208d9417ab47b8c7f01b609c52020-11-25T02:32:10ZengPublic Library of Science (PLoS)PLoS ONE1932-62032017-01-01127e017945210.1371/journal.pone.0179452Time course of changes in oxidative stress and stress-induced proteins in cardiomyocytes exposed to doxorubicin and prevention by vitamin C.Ana LudkeGauri AkolkarPrathapan AyyappanAnita K SharmaPawan K SingalWe previously reported that Vitamin C (Vit C) protects against doxorubicin (Dox)-induced cardiotoxicity by reducing oxidative stress, p38 mitogen-activated kinase (MAPK) and p53 activation and rescuing cell death in isolated adult cardiomyocytes. The pattern of activation and the role of oxidative stress as well as down-stream mechanisms for such protection remain elusive. Therefore the present study aims to analyze time-dependant generation of reactive oxygen species (ROS) and the activation of stress induced signalling pathways in cardiomyocytes treated with Dox and Vit C. The data provides further understanding of heart pathophysiology in response to Dox at the cellular level, and may help to optimize the timing of various therapeutic approaches. Cardiomyocytes isolated from adult Sprague-Dawley rats were exposed to Dox (10 μM), Vit C (25 μM), and Dox + Vit C for different time intervals up to 24 h. p38-JNK (SB203580) and p53 (pifithrin-α) inhibitors were used to determine the role of each respective signalling protein. Dox administration to cardiomyocytes increased the levels of ROS in a time-dependent manner that followed the activation of stress-induced proteins p53, p38 and JNK MAPKs, culminating in an increase in autophagy and apoptosis markers. Dox-induced increase in ROS was alleviated by Vit C adjuvant treatment at all time-points and this was also correlated with blunting of the activation of the studied signaling pathways leading to the prevention of apoptosis and preservation of cell viability. Protective effect of Vit C against the activation of stress induced proteins, autophagy and apoptosis was mainly attributed to its antioxidant properties even though blockage of p38, JNK and p53 by pharmacological inhibitors also suppressed Dox-induced apoptosis. ROS is defined as a key inducer of cardiomyocyte damage under Dox exposure; Vit C could effectively counteract all Dox-induced changes in cardiomyocytes and may potentially be used as an antioxidant adjuvant therapy to protect against Dox-induced cardiomyopathy.http://europepmc.org/articles/PMC5497966?pdf=render
collection DOAJ
language English
format Article
sources DOAJ
author Ana Ludke
Gauri Akolkar
Prathapan Ayyappan
Anita K Sharma
Pawan K Singal
spellingShingle Ana Ludke
Gauri Akolkar
Prathapan Ayyappan
Anita K Sharma
Pawan K Singal
Time course of changes in oxidative stress and stress-induced proteins in cardiomyocytes exposed to doxorubicin and prevention by vitamin C.
PLoS ONE
author_facet Ana Ludke
Gauri Akolkar
Prathapan Ayyappan
Anita K Sharma
Pawan K Singal
author_sort Ana Ludke
title Time course of changes in oxidative stress and stress-induced proteins in cardiomyocytes exposed to doxorubicin and prevention by vitamin C.
title_short Time course of changes in oxidative stress and stress-induced proteins in cardiomyocytes exposed to doxorubicin and prevention by vitamin C.
title_full Time course of changes in oxidative stress and stress-induced proteins in cardiomyocytes exposed to doxorubicin and prevention by vitamin C.
title_fullStr Time course of changes in oxidative stress and stress-induced proteins in cardiomyocytes exposed to doxorubicin and prevention by vitamin C.
title_full_unstemmed Time course of changes in oxidative stress and stress-induced proteins in cardiomyocytes exposed to doxorubicin and prevention by vitamin C.
title_sort time course of changes in oxidative stress and stress-induced proteins in cardiomyocytes exposed to doxorubicin and prevention by vitamin c.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2017-01-01
description We previously reported that Vitamin C (Vit C) protects against doxorubicin (Dox)-induced cardiotoxicity by reducing oxidative stress, p38 mitogen-activated kinase (MAPK) and p53 activation and rescuing cell death in isolated adult cardiomyocytes. The pattern of activation and the role of oxidative stress as well as down-stream mechanisms for such protection remain elusive. Therefore the present study aims to analyze time-dependant generation of reactive oxygen species (ROS) and the activation of stress induced signalling pathways in cardiomyocytes treated with Dox and Vit C. The data provides further understanding of heart pathophysiology in response to Dox at the cellular level, and may help to optimize the timing of various therapeutic approaches. Cardiomyocytes isolated from adult Sprague-Dawley rats were exposed to Dox (10 μM), Vit C (25 μM), and Dox + Vit C for different time intervals up to 24 h. p38-JNK (SB203580) and p53 (pifithrin-α) inhibitors were used to determine the role of each respective signalling protein. Dox administration to cardiomyocytes increased the levels of ROS in a time-dependent manner that followed the activation of stress-induced proteins p53, p38 and JNK MAPKs, culminating in an increase in autophagy and apoptosis markers. Dox-induced increase in ROS was alleviated by Vit C adjuvant treatment at all time-points and this was also correlated with blunting of the activation of the studied signaling pathways leading to the prevention of apoptosis and preservation of cell viability. Protective effect of Vit C against the activation of stress induced proteins, autophagy and apoptosis was mainly attributed to its antioxidant properties even though blockage of p38, JNK and p53 by pharmacological inhibitors also suppressed Dox-induced apoptosis. ROS is defined as a key inducer of cardiomyocyte damage under Dox exposure; Vit C could effectively counteract all Dox-induced changes in cardiomyocytes and may potentially be used as an antioxidant adjuvant therapy to protect against Dox-induced cardiomyopathy.
url http://europepmc.org/articles/PMC5497966?pdf=render
work_keys_str_mv AT analudke timecourseofchangesinoxidativestressandstressinducedproteinsincardiomyocytesexposedtodoxorubicinandpreventionbyvitaminc
AT gauriakolkar timecourseofchangesinoxidativestressandstressinducedproteinsincardiomyocytesexposedtodoxorubicinandpreventionbyvitaminc
AT prathapanayyappan timecourseofchangesinoxidativestressandstressinducedproteinsincardiomyocytesexposedtodoxorubicinandpreventionbyvitaminc
AT anitaksharma timecourseofchangesinoxidativestressandstressinducedproteinsincardiomyocytesexposedtodoxorubicinandpreventionbyvitaminc
AT pawanksingal timecourseofchangesinoxidativestressandstressinducedproteinsincardiomyocytesexposedtodoxorubicinandpreventionbyvitaminc
_version_ 1724820973915471872