A Microfluidic Platform Containing Sidewall Microgrooves for Cell Positioning and Trapping
Microfluidic channels enable the control of cell positioning and the capturing of cells for high-throughput screening and other cellular applications. In this paper, a simple microfluidic platform is proposed for capturing small volumes of cells using sidewall microgrooves. The cell docking patterns...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SAGE Publishing
2015-04-01
|
Series: | Nanobiomedicine |
Online Access: | https://doi.org/10.5772/60562 |
id |
doaj-6f043546fed3424aa6e3f681cc44942c |
---|---|
record_format |
Article |
spelling |
doaj-6f043546fed3424aa6e3f681cc44942c2020-11-25T03:34:38ZengSAGE PublishingNanobiomedicine1849-54352015-04-012A Microfluidic Platform Containing Sidewall Microgrooves for Cell Positioning and TrappingMasoud Khabiry0Nader Jalili1 Bioengineering Department, Northeastern University, Boston, USA Piezoactive Systems Laboratory, Department of Mechanical and Industrial Engineering, Northeastern University, Boston, USAMicrofluidic channels enable the control of cell positioning and the capturing of cells for high-throughput screening and other cellular applications. In this paper, a simple microfluidic platform is proposed for capturing small volumes of cells using sidewall microgrooves. The cell docking patterns in the channels containing sidewall microgroove are also studied. Both numerical and experimental investigations are performed within channels containing sidewall microgrooves of three different widths (i.e., 50, 100 and 200 μm). It is observed that channels containing sidewall microgrooves play an important role in regulating cell positioning and patterning. The obtained results revealed that 10 to 14 cells were positioned inside the sidewall channels of 200 μm width, two to five cells were positioned within the channels of 100 μm width, and one to two individual cells were docked within the sidewall channel of 50 μm width. Particle modelling shows the prediction of cell positioning within sidewall microgrooves. The positions of cells docked within microgroove-containing channels were also quantified. Furthermore, the shear stress variation and cell positioning in the sidewall microgrooves were correlated. Therefore, these sidewall microgroove-containing channels could be potentially useful for regulating cell positioning and patterning on two-dimensional surfaces, three-dimensional microenvironments and high-throughput screening. Cell patterning and positioning are of great importance in many biological applications, such as drug screening and cell-based biosensing.https://doi.org/10.5772/60562 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Masoud Khabiry Nader Jalili |
spellingShingle |
Masoud Khabiry Nader Jalili A Microfluidic Platform Containing Sidewall Microgrooves for Cell Positioning and Trapping Nanobiomedicine |
author_facet |
Masoud Khabiry Nader Jalili |
author_sort |
Masoud Khabiry |
title |
A Microfluidic Platform Containing Sidewall Microgrooves for Cell Positioning and Trapping |
title_short |
A Microfluidic Platform Containing Sidewall Microgrooves for Cell Positioning and Trapping |
title_full |
A Microfluidic Platform Containing Sidewall Microgrooves for Cell Positioning and Trapping |
title_fullStr |
A Microfluidic Platform Containing Sidewall Microgrooves for Cell Positioning and Trapping |
title_full_unstemmed |
A Microfluidic Platform Containing Sidewall Microgrooves for Cell Positioning and Trapping |
title_sort |
microfluidic platform containing sidewall microgrooves for cell positioning and trapping |
publisher |
SAGE Publishing |
series |
Nanobiomedicine |
issn |
1849-5435 |
publishDate |
2015-04-01 |
description |
Microfluidic channels enable the control of cell positioning and the capturing of cells for high-throughput screening and other cellular applications. In this paper, a simple microfluidic platform is proposed for capturing small volumes of cells using sidewall microgrooves. The cell docking patterns in the channels containing sidewall microgroove are also studied. Both numerical and experimental investigations are performed within channels containing sidewall microgrooves of three different widths (i.e., 50, 100 and 200 μm). It is observed that channels containing sidewall microgrooves play an important role in regulating cell positioning and patterning. The obtained results revealed that 10 to 14 cells were positioned inside the sidewall channels of 200 μm width, two to five cells were positioned within the channels of 100 μm width, and one to two individual cells were docked within the sidewall channel of 50 μm width. Particle modelling shows the prediction of cell positioning within sidewall microgrooves. The positions of cells docked within microgroove-containing channels were also quantified. Furthermore, the shear stress variation and cell positioning in the sidewall microgrooves were correlated. Therefore, these sidewall microgroove-containing channels could be potentially useful for regulating cell positioning and patterning on two-dimensional surfaces, three-dimensional microenvironments and high-throughput screening. Cell patterning and positioning are of great importance in many biological applications, such as drug screening and cell-based biosensing. |
url |
https://doi.org/10.5772/60562 |
work_keys_str_mv |
AT masoudkhabiry amicrofluidicplatformcontainingsidewallmicrogroovesforcellpositioningandtrapping AT naderjalili amicrofluidicplatformcontainingsidewallmicrogroovesforcellpositioningandtrapping AT masoudkhabiry microfluidicplatformcontainingsidewallmicrogroovesforcellpositioningandtrapping AT naderjalili microfluidicplatformcontainingsidewallmicrogroovesforcellpositioningandtrapping |
_version_ |
1724558520229036032 |