A perfusion study of the handling of urea and urea analogues by the gills of the dogfish shark (Squalus acanthias)
The branchial mechanism of urea retention in elasmobranchs was investigated using an in vitro isolated-perfused head preparation, as well as in vivo samples, in the spiny dogfish shark. Both in vivo and in control saline perfusions containing 350 mmol L−1 urea, calculated intracellular urea concentr...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
PeerJ Inc.
2013-02-01
|
Series: | PeerJ |
Subjects: | |
Online Access: | https://peerj.com/articles/33.pdf |
id |
doaj-6f0410dc36f54127820196c6e6465a30 |
---|---|
record_format |
Article |
spelling |
doaj-6f0410dc36f54127820196c6e6465a302020-11-25T01:41:50ZengPeerJ Inc.PeerJ2167-83592013-02-011e3310.7717/peerj.3333A perfusion study of the handling of urea and urea analogues by the gills of the dogfish shark (Squalus acanthias)Chris M. Wood0Hon Jung Liew1Gudrun De Boeck2Patrick J. Walsh3Department of Biology, McMaster University, Hamilton, Ontario, CanadaInstitute of Tropical Aquaculture, Universiti Malaysia Terengganu, Kuala Terengganu, MalaysiaDepartment of Biology (SPHERE), University of Antwerp, BelgiumDepartment of Biology, University of Ottawa, Ottawa, Ontario, CanadaThe branchial mechanism of urea retention in elasmobranchs was investigated using an in vitro isolated-perfused head preparation, as well as in vivo samples, in the spiny dogfish shark. Both in vivo and in control saline perfusions containing 350 mmol L−1 urea, calculated intracellular urea concentrations in gill epithelial cells were close to extracellular concentrations. Urea efflux to the external water fell only non-significantly, and calculated gill intracellular urea concentration did not change when perfusate urea concentration was reduced from 350 to 175 mmol L−1 with osmotic compensation by 175 mmol L−1 mannitol. However, when the urea analogues thiourea or acetamide were present in the perfusate at concentrations equimolar (175 mmol L−1) to those of urea (175 mmol L−1), urea efflux rates were increased 4-fold and 6.5-fold respectively, and calculated gill intracellular urea concentrations were depressed by about 55%. Analogue efflux rates were similar to urea efflux rates. Previous studies have argued that either the basolateral or apical membranes provided the limiting permeability barrier, and/or that a back-transporter on the basolateral membranes of gill cells is responsible for urea retention. The present results provide new evidence that the apical membrane is the limiting factor in maintaining gill urea impermeability, and raise the prospect that a urea back-transporter, which can be competitively inhibited by thiourea and acetamide, operates at the apical membrane.https://peerj.com/articles/33.pdfElasmobranchsThioureaAcetamidePerfused headUrea retention |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Chris M. Wood Hon Jung Liew Gudrun De Boeck Patrick J. Walsh |
spellingShingle |
Chris M. Wood Hon Jung Liew Gudrun De Boeck Patrick J. Walsh A perfusion study of the handling of urea and urea analogues by the gills of the dogfish shark (Squalus acanthias) PeerJ Elasmobranchs Thiourea Acetamide Perfused head Urea retention |
author_facet |
Chris M. Wood Hon Jung Liew Gudrun De Boeck Patrick J. Walsh |
author_sort |
Chris M. Wood |
title |
A perfusion study of the handling of urea and urea analogues by the gills of the dogfish shark (Squalus acanthias) |
title_short |
A perfusion study of the handling of urea and urea analogues by the gills of the dogfish shark (Squalus acanthias) |
title_full |
A perfusion study of the handling of urea and urea analogues by the gills of the dogfish shark (Squalus acanthias) |
title_fullStr |
A perfusion study of the handling of urea and urea analogues by the gills of the dogfish shark (Squalus acanthias) |
title_full_unstemmed |
A perfusion study of the handling of urea and urea analogues by the gills of the dogfish shark (Squalus acanthias) |
title_sort |
perfusion study of the handling of urea and urea analogues by the gills of the dogfish shark (squalus acanthias) |
publisher |
PeerJ Inc. |
series |
PeerJ |
issn |
2167-8359 |
publishDate |
2013-02-01 |
description |
The branchial mechanism of urea retention in elasmobranchs was investigated using an in vitro isolated-perfused head preparation, as well as in vivo samples, in the spiny dogfish shark. Both in vivo and in control saline perfusions containing 350 mmol L−1 urea, calculated intracellular urea concentrations in gill epithelial cells were close to extracellular concentrations. Urea efflux to the external water fell only non-significantly, and calculated gill intracellular urea concentration did not change when perfusate urea concentration was reduced from 350 to 175 mmol L−1 with osmotic compensation by 175 mmol L−1 mannitol. However, when the urea analogues thiourea or acetamide were present in the perfusate at concentrations equimolar (175 mmol L−1) to those of urea (175 mmol L−1), urea efflux rates were increased 4-fold and 6.5-fold respectively, and calculated gill intracellular urea concentrations were depressed by about 55%. Analogue efflux rates were similar to urea efflux rates. Previous studies have argued that either the basolateral or apical membranes provided the limiting permeability barrier, and/or that a back-transporter on the basolateral membranes of gill cells is responsible for urea retention. The present results provide new evidence that the apical membrane is the limiting factor in maintaining gill urea impermeability, and raise the prospect that a urea back-transporter, which can be competitively inhibited by thiourea and acetamide, operates at the apical membrane. |
topic |
Elasmobranchs Thiourea Acetamide Perfused head Urea retention |
url |
https://peerj.com/articles/33.pdf |
work_keys_str_mv |
AT chrismwood aperfusionstudyofthehandlingofureaandureaanaloguesbythegillsofthedogfishsharksqualusacanthias AT honjungliew aperfusionstudyofthehandlingofureaandureaanaloguesbythegillsofthedogfishsharksqualusacanthias AT gudrundeboeck aperfusionstudyofthehandlingofureaandureaanaloguesbythegillsofthedogfishsharksqualusacanthias AT patrickjwalsh aperfusionstudyofthehandlingofureaandureaanaloguesbythegillsofthedogfishsharksqualusacanthias AT chrismwood perfusionstudyofthehandlingofureaandureaanaloguesbythegillsofthedogfishsharksqualusacanthias AT honjungliew perfusionstudyofthehandlingofureaandureaanaloguesbythegillsofthedogfishsharksqualusacanthias AT gudrundeboeck perfusionstudyofthehandlingofureaandureaanaloguesbythegillsofthedogfishsharksqualusacanthias AT patrickjwalsh perfusionstudyofthehandlingofureaandureaanaloguesbythegillsofthedogfishsharksqualusacanthias |
_version_ |
1725039432183054336 |