Synthesis of Pure NiTiSn by Mechanical Alloying: An Investigation of the Optimal Experimental Conditions Supported by First Principles Calculations

Synthesis of NiTiSn by a mechanical alloying process followed by a high temperature thermal annealing was studied. Experiments were conducted varying parameters like the provided energy, the mechanical alloying reaction time, as well as the annealing temperature and duration. Based on the careful in...

Full description

Bibliographic Details
Main Authors: Monique Tillard, Alexandre Berche, Philippe Jund
Format: Article
Language:English
Published: MDPI AG 2018-10-01
Series:Metals
Subjects:
Online Access:http://www.mdpi.com/2075-4701/8/10/835
Description
Summary:Synthesis of NiTiSn by a mechanical alloying process followed by a high temperature thermal annealing was studied. Experiments were conducted varying parameters like the provided energy, the mechanical alloying reaction time, as well as the annealing temperature and duration. Based on the careful investigation of the phases present in the samples by systematic X-ray diffraction (after mechanical alloying and after annealing) and selected microscopy analyses, a reaction mechanism is proposed supported by theoretical calculations at the DFT (Density Functional Theory) level. An energy window to prepare directly NiTiSn has been evidenced. Highly pure NiTiSn has also been obtained by conversion from a multicomponent precursor obtained by low energy mechanical alloying.
ISSN:2075-4701